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Resumo

O controlo da orientação de satélites no espaço é um problema comum em engenharia aeroespacial.

Para resolvê-lo consideram-se dispositivos de produção de binários de reacção. A esfera de reacção

consiste numa nova aproximação a um dispositivo de produção de binários de reacção. Este dispositivo

é composto por uma esfera, um sistema de actuação composto por quatro ou mais rodas holonómicas

e uma estrutura envolvente. O contacto mecânico do sistema de actuação com a superfı́cie esférica

permite três graus de liberdade de rotação independentes à esfera assim como também garante o seu

equilı́brio estático. Simultaneamente, o sistema de actuação está acoplado à estrutura envolvente. Ou

seja, o sistema de actuação permite a criação de binários de reacção segundo qualquer eixo de rotação

assim como assegura a transferência de momento angular a qualquer corpo acoplado ao dispositivo,

e.g. satélites. Esta tese estuda a viabilidade e o desempenho da esfera de reacção. A controlabilidade

da esfera de reacção é caracterizada a partir do seu modelo cinemático. Considera-se um exemplo

de construção da esfera de reacção baseada num sistema de actuação com configuração tetraédrica

regular, onde o respectivo Jacobiano descreve o movimento dos actuadores em relação ao movimento

da esfera provando a não existência de singularidades. Por fim, analisa-se um modelo Simulink® do

sistema de controlo da atitude de um satélite considerando dispositivos de produção de binários de

reacção. Comparando o desempenho da esfera de reacção em função do trabalho mecânico a um

sistema equivalente de rodas de inércia, concluem-se quais as suas vantagens.

Palavras-chave: Esfera de reacção, Rodas de inércia, Sistema de controlo de atitude de um

satélite
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Abstract

Satellite attitude control is a common problem in aerospace engineering. To solve it, reaction torque

devices are usually considered. The reaction sphere actuator (RSA) is a novel device regarding reaction

torque devices. The RSA is composed of a sphere, an actuation system and an outer shell. The

mechanical rolling contact between the actuator system and RSA sphere surface, allows the sphere

rotational motion and also achieves its static equilibrium. The actuator system composed of four or more

holonomic wheels allows sphere three independent rotational DOF, allowing reaction torques generation

according to any rotational axis. Moreover, the actuator system is coupled to an outer shell allowing

angular momentum transfer to any RSA coupled body, e.g. satellites. This thesis performs a feasibility

study proving the RSA construction eligibility as well as its performance analysis. The RSA controllability

study is based upon its kinematic model considering rolling contact kinematics. Furthermore a RSA

construction example is described considering an actuator system with a regular tetrahedral geometry

configuration. The RSA Jacobian describes the RSA actuators motion for a desired reaction torque and

proves its singularity-free property. Finally a performance analysis comparison between a RSA and an

equivalent reaction wheel arrangement is depicted. Such analysis is performed according to a satellite

attitude control scheme Simulink® model, measuring both RTDs mechanical work for the same desired

control torques. The comparison of both simulation results shows the RSA concept benefits.

Keywords: Reaction torque device, Reaction sphere actuator, Satellite attitude control scheme
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Chapter 1

Introduction

Figure 1.1: RSA with a regular tetrahedral geometry actuation system

This thesis analyses a reaction sphere actuator (RSA) device on its appliance to satellite attitude

control problems. The referred device is a novel device taking advantage of spherical mass distribution

for reaction torques production. A RSA kinematic and dynamic analysis verifies both the device physical

feasibility and its benefits compared to other reaction torque devices (RTDs).

The RSA device, see Figure 1.1, is composed of a sphere, an actuation system and an outer shell

(illustrated as a cubic case in Figure 1.1). The actuator system is composed of four or more holonomic

wheels in mechanical contact with the sphere surface, conferring three independent rotational DOF to

the sphere. Additionally, each holonomic wheel is actuated by a motor rigidly attached to the RSA outer

shell, in fact, such coupling guarantees the sphere angular momentum transfer to any RSA coupled

body, e.g. satellites. Furthermore, the actuator number and their contact points geometrical disposition

determines the sphere static equilibrium, and its capability to rotate without displacing its geometric

center with respect to an inertial frame described in the outer shell.

In Chapter 2 the RSA kinematic model is illustrated. The RSA kinematic analysis is divided in two

steps. First, is studied a rolling sphere in a plane problem, studying the sphere controllability when

non-coplanar angular speeds are used as sphere motion control inputs. In fact, differential geometry
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concepts are used to describe the rolling mechanical contact between the sphere surface and holonomic

actuators. Thereafter, a kinematic model for a holonomic mobile robot is considered due to its similarities

compared to the actuator system geometry. The controllability of such model combined with the rolling

sphere controllability enables the RSA controllability analysis.

Chapter 3 illustrates a satellite attitude dynamical model and control. First, a comparison of dis-

tinct satellite attitude formulations is considered, showing quaternion notation advantages for a SACS.

Thereafter a satellite feedback attitude control is described allowing satellite reference attitude tracking.

Moreover, a simple PD control law for satellite attitude control is presented, determining RTDs required

control torques. Two types of RTDs are characterized, namely a RSA and a RW arrangement.

In Chapter 4 a set of distinct simulations are performed proving both satellite plant model validity and

RTD performance. First, a simple SACS model without a RTD inclusion is simulated showing SACS atti-

tude convergence for any attitude reference. Since this model doesn’t account for RTDs limitations, any

control torques given by the controller are feasible to apply to the satellite. Thereafter, a SACS with the

inclusion of a RTD is analysed, allowing to compare both devices energy consumption in terms of me-

chanical work. Hence, ensuring RTDs equivalent physical parameters, a valid performance comparison

can be considered.

Chapter 5 states this thesis main conclusions. Important aspects as the system physical feasibility

and possible drawbacks are referred. The chapter ends with a list of topics that could be considered for

future work.

1.1 Contributions

The demanding requirements in satellite attitude control problems are continuously being updated.

As years go by, satellites become more complex with components being constantly optimized to fulfil

space mission goals. Additionally, there’s a major concern regarding components weight and energy

consumption. Therefore, the RSA presents a novel concept considering such concerns.

The major contribution of such device, as it may be seen in Chapter 4, is to achieve similar reaction

torque production compared to RW arrangements, with less system weight or equivalently, less energy

consumption.

1.2 State-of-the-art

1.2.1 Reaction Wheels arrangements

Reaction torque devices are usually applied to control satellite attitude systems. The most common

ones are reaction wheels, being essentially inertia disks rotating around a fixed axis. Such devices

allow satellite attitude maneuvers due to angular momentum conservation. Furthermore, consider a

rigid body in a torque-free situation with a RW coupled to its body. When RW angular velocity changes,

its angular momentum also changes, causing a counter-movement performed by the overall rigid body,

2



see Appendix A. Hence, a single RW with its rotational axis fixed, may induce attitude changes to its

coupled body around a single rotational axis vector. Consequently three-axis attitude motion capability

can be achieved considering for instance a simple configuration composed of three RWs orthogonally

disposed.

Besides reaction torque production capability, RWs also operate as momentum wheels, granting

large amounts of stored angular momentum to satellites, thus reducing satellite external disturbances

impact. Moreover, when external disturbances affect a satellite attitude, reaction wheels increase its

angular momentum which eventually makes the RW to saturate. Therefore, occasionally there’s a need

to desaturate the satellite RWs, which can be performed with alternative RTDs, see [16].

RW arrangement dynamics can be analysed according Euler’s equation, describing reaction torques

for angular motion changes. See (1.1) for a RW arrangement dynamics general equation, note that (1.1)

can still be expanded for three-dimensional rotations.

J · ω̇ + ω × (J · ω) = τ (1.1)

SACS software simulators with RW arrangements usually include RWs disturbances modelling, such

as motor friction effects, motor bearings losses, RW body mass imbalances and others. For instance,

[7] describes a RW model including electrical motors dynamic friction. Whereas [13] describes a mass

imbalanced RW modelling and how it affects the SACS performance. Besides RW dynamical character-

istics, SACS software simulators usually account for other satellite disturbances, such as solar radiation,

gravity gradients, satellite flexibility, liquid slosh and others. An example of such kind of three-axis SACS

software simulator is described in [21].

There are other approaches besides SACS software simulators, such as satellite physical model

construction and performance measurement in a suitable testbed. The referred testbeds usually consist

of a spherical air-bearing in which the satellite model stands, allowing it to have a limited angular motion

range, which approximates the space free-torque environment. Furthermore, [27] shows a study of a

satellite model analysis concerning RWs in a similar testbed.

RW arrangements can control independently each RW motion. Furthermore a RW arrangement

overall torque1 corresponds to the sum of all RWs torques.

RW arrangements vary both in RW number and geometry configuration, there’s a common tendency

to make these systems redundant, which has advantages regarding RW failure tolerance. Additionally,

redundant RW arrangements usually allow a greater reaction torque capability, at the expense of requir-

ing more mass. Hence, distinct RW arrangement geometry configurations have distinct performances.

For instance, see [18] and [12] for a comparison of RW arrangements configurations composed of three

and four RWs.

RW arrangements composed of more than three RWs are redundant, i.e. there are several RW

torque combinations which result in the same overall resultant torque. Therefore, optimal criteria are

used to choose one solution among all RW torque combinations. See [23] for two optimal criteria usually

1Torque has an important physical addition property that states that its overall value is independent of the RW geometrical
location on the satellite frame. Therefore, RWs can be displaced in any geometrical location in the satellite frame.
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Figure 1.2: Reaction Wheel regular tetrahedral configuration (obtained from ESA reports)

considered for RW arrangements.

A common four RWs configuration considers a regular tetrahedral geometry, see Figure 1.2.

RWs torque capability vary according to its inertial disk mass distribution and motor specifications.

Such devices are usually applied for small satellites due to their mass/torque efficiency. Whereas heavier

satellites and spacecrafts usually consider other RTDs. For instance, CMGs (control moment gyroscope)

are often used for heavier satellites and spacecrafts. CMGs have more complex control techniques

due to their gimbal lock possibilities, although providing higher power efficiency when compared to RW

arrangements. A performance comparison study between RWs and CMGs is described in [31].

1.2.2 ELSA Project

ELSA project aims to build a magnetically levitated spherical actuator and is being researched by

several European companies that work in the field of aerospace engineering. Despite ELSA project

and RSA share the same goal (reaction torque production), there’s a major difference concerning both

actuators.

Figure 1.3: ELSA project spherical rotor (obtained from ELSA project website)

ELSA project actuator is composed of a magnetic spherical rotor that reacts to an induced elec-

tromagnetic field generated from an involving stator. Although being an innovative concept, it presents

difficulties concerning the sphere rotor precise control, due to its complex magnetic dynamic model. The

project has several goals that seeks to fulfil. The following list depicts ELSA project main goals, set in

4



accordance to ESA demands,

• torque capability larger than 0.4Nm

• momentum storage in the order of 40Nms

• high fidelity speed measurement

• reduced and guaranteed micro-vibration spectra

A magnetic spherical rotor presents some benefits compared to RSA rolling mechanical contact so-

lution. For instance, it is absent of mechanical friction losses, mechanical vibrations and has a mass

reduction due to the absence of physical actuators. Nevertheless, the production cost of a spherical

magnetic rotor is probably higher compared to a RSA suitable sphere, due to its delicate building ap-

proach. Figure 1.3 illustrates an image of the spherical rotor concept depicting its magnetic cores.

1.2.3 Ballbots

Ballbots contributed to the motivation of this thesis due to their actuation system. Therefore, a brief

description regarding a Ballbot model is considered.

Ballbots are essentially mobile robots consisting of inverted pendulums which stand on a sphere and

move on a plane by actuating the sphere motion accordingly. An example of a Ballbot illustration is

present in Figure 1.4, which corresponds to the Rezero Ballbot, see [9].

Figure 1.4: Rezero Ballbot (obtained from [9])

Several studies regarding Ballbot’s dynamics were conducted by Microdynamic Systems Laboratory

at Carnegie Mellon University. Both [9] and [17] show important considerations concerning Ballbot

dynamical models which motivated the RSA concept development.

The RSA actuating system can actually be seen as an alternative application of the one used by

Ballbots. Nevertheless, Ballbots aim to control an inverted pendulum by moving its sphere, whereas

RSAs aim to move its internal sphere in order to produce reaction torques and apply them to RSA

coupled bodies. Hence although their purposes are distinct there is a relation between both devices

actuating systems since they both rely upon holonomic wheels.
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Some of the following theoretical concepts and images have been taken in consideration according

to [9].

The adopted Ballbot dynamical model relies upon Lagrangian dynamical formulation. Therefore, a full

rigid bodies energy characterization composing the Ballbot is required. The use of a proper coordinate

formulation for such kind of systems eases their model equations computation. Therefore, the system

can be divided and analysed in three distinct independent planes easing its total dynamical model study.

Figure 1.5: Ballbot Planar Model (obtained from [9])

Figure 1.5 illustrates the referred planes representing the system with respect to each DOF imposed

by the holonomic actuators. This simplistic model assumes that each holonomic wheel corresponds to a

virtual actuating wheel in each plane. This assumption eases model computations, although, it doesn’t

represent the actual reality of a holonomic wheel. Additionally, note that such planar description is also

convenient given that a Ballbot uses only three holonomic wheels.

The planar system modelling approach has certain benefits regarding the three independent planar

models. Two planes, namely the xz-plane and yz-plane, have several similarities. Whereas the third

plane (xy -plane) describes the sphere rotation around the z axis.

The dynamic model formulation requires all rigid bodies identification composing the Ballbot sys-

tem. Hence, in each independent plane there are three rigid bodies, the sphere, the actuating wheels

(simplifying the omniwheel plus the respective motor) and the Ballbot body.

Thus, consider the following system describing parameters,

• ϑx,y,z - body orientation

• ϕx,y,z - ball orientation

• ψx,y,z - virtual actuating wheels angles

Using a minimal system of coordinates, the system pose can be fully described using three vectors as

follows,

~qxy =

ϕz
ϑz

 ~qyz =

ϕx
ϑx

 ~qxz =

ϕy
ϑy

 (1.2)

6



Hence the system energy equations can then be found according to Lagragian formulation using gener-

alized coordinates, yielding,

d

dt

(
∂T

∂~̇q

)T
−
(
∂T

∂~q

)T
+

(
∂V

∂~q

)T
− ~fNP = 0 (1.3)

where T , V and ~fNP denote respectively the kinetic energy, potential energy and external forces. Where

external forces refer to forces applied to the system, such as the motor torques induced in the holonomic

actuators. Therefore, for each virtual plane describing the Ballbot there’s an equation (1.3) describing

the system energy equilibrium.

Additionally, each system plane equations can be written in matrix form, see (1.4).

Mx(~q, ~̇q)~̈q + Cx(~q, ~̇q) +Gx(~q) = fNP (1.4)

where variables Mx, Cx, Gx and fNP denote respectively the system mass and inertia matrix, the Cori-

olis forces matrix, the gravitational forces and the external forces. Given the system rigid bodies energy

equations it’s possible to obtain (1.4) matrices. Hence, solving (1.4) with respect to each plane minimal

coordinates, describes how these variables change according to the system inputs, i.e. according to

external forces.

1.2.4 Atlas Flight Simulator

The concept of inducing rotational motion to a sphere with holonomic wheels has also recently ap-

peared for flight simulators. In fact, Atlas Motion Platform project developed by Carleton University is

the first device of its kind. Similarly to the RSA device, a spherical body is rotated by holonomic wheels

allowing three DOF rotation capability, without displacing its geometrical center. Nevertheless, there are

certain differences comparing both devices. The atlas sphere static equilibrium is not ensured by the

holonomic actuators, but due to a frame containing several bearings in contact with the sphere surface.

Furthermore, the Altas device aims to create a flight simulator cockpit with full rotational capabilities that

stands upon a parallel manipulator with three translation DOF. Such configuration creates a full six DOF

capability realistic flight simulator.

Some Atlas kinematic model studies describe the system kinematic feasibility as well as possible

actuator system geometries, see [20].

Although being a device which does not share the same goals as the RSA it allowed to motivate the

RSA concept feasibility. Therefore, it represented an important analysis for the present thesis. Moreover,

in kinematic terms the both systems Jacobians are quite similar.

The state-of-the-art review shows us the nonexistence of a RTD with a spherical geometry with

an actuation system based upon rolling mechanical contact with the sphere surface. Hence, the RSA

presents itself as a novel device, relevant for analysis.
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Chapter 2

Kinematic Model

This chapter is dedicated to the RSA kinematic analysis. Such analysis verifies the RSA internal

sphere motion feasibility according to the actuating system geometry. Furthermore, the kinematic model

equations allow the device controllability study, showing RSA eligibility in kinematic terms for satellite

attitude control schemes. In other words the controllability proves the RSA capability to actuate the

sphere according to any desired angular motion. Consequently, it can produce reaction torques with

respect to any rotational vector. The kinematic model analysis is divided in two steps, namely, the

motion analysis of a sphere rolling on a plane and a holonomic mobile robot.

Section 2.1 illustrates differential geometry concepts, describing rolling contact kinematics between

the holonomic actuators and sphere surface. This concepts are relevant for computing the rolling sphere

kinematic model. In fact, differential geometry concepts can describe any spheroid surface.

Section 2.2 applies differential geometry concepts for a spherical body. Hence, this Section describes

the kinematic model of a sphere rolling on a plane, having as controlling inputs non-coplanar angular

velocities vectors applied to its body. The model controllability can be proved showing the sphere ability

to follow any trajectory on the plane surface with any orientation. Furthermore, such controllability is

verified according to Lie Algebra concepts.

Section 2.3 illustrates an actuator system kinematic analysis. Due to their similarities with the actua-

tor system, a holonomic mobile robot is considered. Hence, by inference, studying its kinematic model,

some conclusions regarding the actuator system can be stated. The holonomic mobile robot full motion

capability, i.e., its capability to follow any trajectory on the plane with any orientation proves the holo-

nomic mobile robot controllability. Consequently, by analogy, the RSA actuator system controllability is

also proven when it is moving on a plane surface.

Considering the kinematic analysis performed in Section 2.2 and 2.3 and following a logic reasoning

the overall RSA kinematic model controllability is shown.
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2.1 Rolling Contact Kinematics

Rolling contact kinematics is a relevant field of study in engineering, it allows to fully describe me-

chanical contact between two objects. These concepts have several practical applications, such as,

characterizing robot hands grasp problems, mobile robots moving on regular surfaces and so on. Since

this chapter concerns a RSA kinematic analysis, these theoretical concepts are useful for describing the

RSA sphere angular motion capabilities. For a more detailed description see [26] and [5].

Consider an object in R3, where its surface is described according to a local coordinate map, as

follows,

c : U ⊂ R2 → R3 (2.1)

The map c illustrated in Figure 2.1 relates a point (u, v) ∈ R2 with a point x ∈ R3 belonging to

the object surface, described with respect to reference frame O. Thus if only one map is required to

parametrize the object surface, c : U ⊂ R2 allows the entire object surface description. Some object

surfaces parametrizations require the use of several maps, being the collection of such maps often

called as atlas. Note that, the c mapping is sometimes referred as a parametrization, being both terms

equivalent in differential geometry terms.

The following analysis concern regular surfaces parametrization, see [5] for a regular surface defini-

tion.

Figure 2.1: Object Surface (obtained from [26])

Any point belonging to a regular surface has a tangent plane defined by the set of vectors tangent to

the object surface at the referred point. This tangent plane can be defined by two vectors cu := ∂c
∂u and

cv := ∂c
∂v . Hence, any point in surface c(u, v) is described according to a linear combination of vectors cu

and cv, evaluated at (u, v).

The surface area can be computed as the inner product of two tangent vectors lying on the referred

surface. This product defines the parallelogram area with respect to those two vectors, thus it’s feasible

to compute the total area of an object surface. Such area computation is commonly related with a
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surface first fundamental form, describing two tangent vectors inner product relation with the natural

inner product on R3. Geometrically, the first fundamental form allows surface measurements such as

curves lengths, tangent vectors angles, regions areas, and others. Therefore, using the first fundamental

form all these computations can be performed without referring back to the ambient space R3 where the

surface lies.

The first fundamental form can be computed in a local coordinate chart, being represented by a

quadratic form Ip : R2 × R2 → R which takes two tangent vectors attached to a point p = c(u, v) and

gives their inner product, see (2.2).

Ip =

cTu cu cTu cv

cTv cu cTv cv

 (2.2)

If the object surface map is orthogonal then matrix Ip is diagonal, furthermore a map orthogonality

can be determined checking if cu and cv are orthogonal.

The first fundamental form can be used to define the surface metric tensor, given by the square

root of the first fundamental form and it is usually applied to tangent vectors normalization. Matrix

Mp : R2 → R2 is then defined as positive definite and satisfies (2.3).

Ip = Mp.Mp (2.3)

If Ip is orthogonal, then, matrix Mp is also diagonal, yielding,

Mp =

‖cu‖ 0

0 ‖cv‖

 (2.4)

Surface S parametrization allows the definition of an outward pointing unit normal by taking the

cross product between the vectors defining the tangent space. Thus, considering cv and cu vectors

and identifying all normal unit vectors in S ⊂ R3, one obtains the map N : S → R3 which essentially

represents the unit sphere.

N(u, v) =
cu × cv
‖cu × cv‖

(2.5)

Map N : S → S2 gives the unit normal at each point on S and is called Gauss Map. Where S2 is defined

as S2 = (x, y, z) ∈ R3.

For smooth, orientable surfaces, the Gauss map is a well defined differential mapping, see [5] for a

detailed Gauss map analysis. The Gauss map directional derivative defines a surface second funda-

mental form, measuring the surface curvature. Moreover in a local coordinate map it is represented as

IIp, see (2.6).

IIp =

cTunu cTunv

cTv nu cTv nv

 (2.6)

where n = N(u, v) is the unit normal at a point on the surface and nu := ∂n
∂u , nv := ∂n

∂v .

It is convenient to scale the second fundamental form and define the curvature tensor for a surface.
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For an orthogonal set of coordinates, the curvature tensor is a mapping K : R2 → R2 defined as,

Kp = M−Tp IIpM
−1
p =

 cTunu

‖cu‖2
cTunv

‖cu‖‖cv‖
cTv nu

‖cu‖‖cv‖
cTv nv

‖cv‖2

 (2.7)

Note that matrices M−1p and M−Tp represent a scaling factor. Moreover, this curvature tensor can be

thought of a measure of how the unit normal vector changes across the surface, projected on the tangent

plane. If the surface is flat, then nu = nv = 0 and Kp = 0.

It’s also possible to compute the curvature tensor in terms of a special coordinate frame called the

normalized Gauss frame. This notation is suitable if the c(u, v) parametrization is orthogonal, thus its

respective Gauss frame can be simplified as follows,

[
x y z

]
=
[
cu
‖cu‖

cv
‖cv‖ n

]
(2.8)

And so, the curvature tensor can take advantage of this compact notation yielding,

Kp =

xT
yT

[ cu
‖cu‖

cv
‖cv‖

]
(2.9)

Now that the two first fundamental forms are defined, it only remains to define one last surface

characterization metric which combined with the previous two, fully describes any regular surface.

The torsion form measures the curvature rate change along a surface S curve. Therefore, a surface

torsion form is a measure of how the Gauss frame twists as one moves across the surface, again

projected onto the tangent plane.

The torsion form computation only requires to know how either x or y change, since they are or-

thonormal. Therefore the torsion form is defined as,

Tp = yT
[
xu

‖cu‖
xv

‖cv‖

]
=
[

cTv cuu

‖cu‖2‖cv‖
cTv cuv

‖cu‖‖cv‖2

]
(2.10)

where xu and xv denote respectively the x and y partial derivatives with respect to u and v. Additionally

cuu = ∂2c
∂u2 and cuv = ∂2c

∂u∂v denote the mapping second order derivatives with respect to u and v.

Thus a solid regular surface can be described according to parametrizations (Mp,Kp, Tp), which are

collectively referred as the surface geometric parameters.

Now that any regular surface can be parametrized, it is relevant to analyse the theoretical concepts

describing two contact frames velocity in a rolling contact kinematic situation. Conveniently, the contact

frame velocity can be computed according to its surface geometric parameters.

Let p(t) ∈ S be a parametrization of a curve along an object surface coherent with its Gauss frame

in every time instant.

Figure 2.2 shows the contact curve describing the contact point evolution with time. Assume that

frame O is fixed with respect to the object. Therefore frame C motion must be characterized with respect

to frame O, according to the rigid transformation goc ∈ SE(3) .
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Figure 2.2: Contact curve (obtained from [26])

For simplicity, let physical contact between the object surfaces So and Sf , be always defined at a

single point of contact. The kinematic model is based on the motion of this contact point relative to

the objects motion. Hence, consider that p(t) lies in a single coordinate map U → R3, it is possible to

represent the local coordinates as α(t) = c−1(p(t)). The position and orientation of the contact frame

relative to the reference frame are given as,

poc(t) = p(t) = c(α(t))

Roc =
[
x(t) y(t) z(t)

]
=
[
cu
‖cu‖

cv
‖cv‖

cu×cv
‖cu‖×‖cv‖

] (2.11)

where Roc corresponds to the rotation matrix from frame O to frame C. The linear body velocity is given

by voc = RToc ˙poc, see (2.12).

voc =


xT

yT

zT

 ∂c

∂α
α̇ =


xT cu xT cv

yT cu yT cv

zT cu zT cv

 α̇ =

Mpα̇

0

 (2.12)

As it can be seen from (2.12) there’s no velocity along the z direction, since the object moves in a plane.

The angular velocity equation is obtained according to (2.13).

ω̂oc = RTocṘoc =


xT

yT

zT

× [ẋ ẏ ż
]

=


0 xT ẏ xT ż

yT ẋ 0 yT ż

zT ẋ zT ẏ 0

 (2.13)

Additionally, S(ω) matrix allows to simplify (2.13), see (A.17) .

In terms of the surface geometric parameters (2.13) is defined as,

ω̂oc =


0 −TpMpα̇

TpMpα̇ 0
KpMpα̇

−(KpMpα̇)T 0

 (2.14)

Consider now Figure 2.3 illustrating two object surfaces in mechanical contact at a single point. With

the background knowledge of contact frame velocity equations, the motion of each object frame can
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Figure 2.3: Two object contact (obtained from [26])

be characterized. This allows the contact point time evolution description with respect to the objects

geometric parameters. For simplicity let the motion be contained in a single parametrization and the

contact point be uniquely defined for both objects.

Let po(t) ∈ So and pf (t) ∈ Sf be respectively the contact point position at time t with respect to frames

O and F . Moreover, for each frame there is a map describing its surface, namely (co, Uo) and (cf , Uf ).

Hence αo = c−1o (po) ∈ Uo and αf = c−1f (pf ) describe each object local coordinates. The ψ angle

Figure 2.4: Local frames (obtained from [26])

denotes the rotation between the tangent vectors ∂co
∂uo

and ∂cf
∂uf

. Consequently the contact coordinate

can be fully described by (αo, αf , ψ). Frame O and F motion description at time t requires the definition

of additional frames located at the contact point for each surface. Hence let Lo(t) and Lf (t) be the

referred local coordinate frames, see Figure 2.4.

Finally, frame O and F contact motion equations yield,

α̇f = M−1f (Kf + K̃o)
−1

−wy
wx

− K̃o

vx
vy

 (2.15)
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α̇o = M−1o Rψ(Kf + K̃o)
−1

−wy
wx

−Kf

vx
vy

 (2.16)

ψ̇ = wz + TfMf α̇f + ToMoα̇o (2.17)

vz = 0 (2.18)

K̃o = RψKoRψ

Rψ =

 cos(ψ) −sin(ψ)

−sin(ψ) −cos(ψ)

 (2.19)

where ωx,ωy,ωz,vx,vy and vz are respectively the angular and linear velocities of object F with respect

to object O. The previous motion equations proof can be found in [24].

Frenet-Serret formulas are also another form of describing the kinematic properties of a particle

moving along a continuous, differentiable curve in three-dimensional Euclidean space R3. Hence this

rolling kinematic model could also be computed according to such formulas, see [5].

Having stated all theoretical concepts required to devise the motion equations regarding a rolling

contact between two objects, lets consider their application to the RSA sphere case.

As referred before, due to the surface complexity of a holonomic actuator the RSA kinematic model

analysis is divided into two steps, namely the motion of a rolling sphere on a plane and a holonomic

mobile robot. The rolling sphere on a plane doesn’t match exactly the RSA kinematic behaviour, never-

theless in combination with the kinematic analysis of the actuator system, it is possible to infer the RSA

controllability.

Consider a r radius sphere, having its surface parametrized according to a single spherical coordi-

nates map. A frame located on the sphere surface can be described by a rotation matrix with respect to

u and v angles.

Figure 2.5 shows a parametrization defined as, U = (u, v) : −π2 < u < π
2 ,−π < v < π, where the

contact point coordinates in the sphere frame Σo are obtained according to the following vector,

c(uo, vo) =


−rsin(uo)cos(vo)

rsin(vo)

−rcos(uo)cos(vo)

 = Ry(uo)Rx(vo)


0

0

−r

 (2.20)

Vector (2.20) defines any position on the sphere surface with respect to angles uo and vo. Hence, the

sphere surface tangent vectors can be computed considering the partial derivatives of c with respect to

uo and vo, yielding,

cu =
∂c

∂uo
=


−rcos(uo)cos(vo)

0

rsin(uo)cos(vo)

 , cv =
∂c

∂vo


rsin(uo)sin(vo)

rcos(vo)

rcos(uo)cos(vo)

 (2.21)

It can be easily verified that cTu cv = 0, proving the map orthogonality. The sphere surface metric,
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Figure 2.5: Sphere parametrization

curvature and torsion tensors are respectively given by:

Mo =

rcos(vo) 0

0 1

 ,Ko =

 1
r 0

0 1
r

 , To =
[
−tan(uo)

r 0
]

(2.22)

Having described the sphere geometric parameters it is still required to find the geometric parameters

of plane frame O. Since a plane is a flat surface, its geometric parameters are quite trivial to compute.

The map coordinates are defined as ua and va, thus the plane surface local coordinates are chosen to

be c(ua, va) = (ua, va, 0). Therefore, the plane metric, curvature and torsion tensors are described by

(2.23).

Ma =

1 0

0 1

 ,Ka =

0 0

0 0

 , Ta =
[
0 0

]
(2.23)

Figure 2.6 shows the coordinate frames required for motion problem formulation. Let Σb be the world

frame, Σo a fixed frame at the sphere geometric centre and Σa a fixed frame fixed at the contact plane.

Additionally, at contact point, there are two contact frames, namely Σco for the sphere and Σca for the

plane. Figure 2.6 illustrates all frames used for obtaining the kinematic model.

Since c(uo, vo) defines the Gaussian frame Σco whose orientation with respect to Σo is

Roco =
[
cu
‖cu‖

cv
‖cv‖

cu×cv
‖cu×cv‖

]
(2.24)

Knowing the values of cu and cv it’s possible to rewrite the matrix with respect to these vectors, as
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Figure 2.6: Sphere frames (obtained from [29])

follows

Roco(uo, vo) =


−cos(uo) sin(uo)sin(vo) −sin(uo)cos(vo)

0 cos(vo) sin(vo)

sin(uo) cos(uo)sin(vo) −cos(uo)cos(vo)

 (2.25)

Matrix (2.25) can alternatively be seen as the composition of three rotation matrices, as follows,

Roco(uo, vo) = Ry(uo)Rx(vo)Ry(π) (2.26)

Let’s define Rbo, i.e. the sphere frame orientation matrix relative to the world frame. First, consider the

rotation from Σco to Σca which results in the superimposition of its axes. The combination of two specific

rotation matrices achieves the referred frames axes superimposition, namely Ry(π) and Rz(ψ). Thus,

the orientation of Σco relative to Σca is defined as

RbcoRy(π)Rz(ψ) = Rbca (2.27)

where,

Ry(π)Rz(ψ) =


−cos(ψ) sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 −1



Ry(π) =


−1 0 0

0 1 0

0 0 −1


(2.28)

The ψ angle is defined between Σco and Σca x-axes and has its angle rotation opposite to the right hand
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rule.

Let us assume that frame Σa coincides with Σb and that frame Σca is coherent with Σa. From closing

the kinematic chain associated with the coordinate frames one obtains,

RboR
o
coRy(π)Rz(ψ) = Rbca ≡ I (2.29)

Hence

RboRy(uo)Rx(vo)Rz(ψ) = I (2.30)

The sphere orientation matrix is then given by,

R ≡ Rbo = RTz (ψ)Rx(vo)
TRy(uo)

T (2.31)

Let ṽ =
[
ṽx ṽy ṽz

]
and w̃ =

[
w̃x w̃y w̃z

]
be respectively, the translational and angular velocity of

Σco relative to Σca. The physical interpretation of Σco angular velocities can be projected into Σb. Hence

the angular velocity vector, wo =
[
wx wy wz

]
is obtained from the rotation between these two frames

as follows,

w̃ = Ry(π)Rz(ψ)wo (2.32)

Substituting (2.20), (2.22) and (2.22) in (2.15), (2.16), (2.17) and (2.19) the kinematic model motion

equations yield, 

u̇a

v̇a

u̇o

v̇o

ψ̇


=



0 −r 0

−r 0 0

−sin(ψ)
cos(vo)

−cos(ψ)
cos(vo)

0

−cos(ψ) sin(ψ) 0

−sin(ψ)tan(vo) −cos(ψ)tan(vo) −1




wx

wy

wz

 (2.33)

Note that (2.33) uses the contact frame angular velocity projections defined in (2.32).

This Section shows the importance of rolling contact kinematics for analysing the kinematic model of

any two objects with regular surfaces. Hence, besides the sphere rolling on a plane other spheroids can

be considered.

2.2 Controllability of the Sphere Kinematic model

The rolling sphere controllability can be studied according to its kinematic model, see [28] for a

controllability definition. Moreover, this section analyses the controllability according to some Lie Algebra

concepts, see [26] and [30] for further details.

The kinematic model (2.33) is a 3-inputs 5-outputs system, thus it contains three vector fields de-

scribing three independent motions.

Alternatively the kinematic model (2.33) can be seen with respect to its vector fields, as follows,

q̇ = g1(q)u1 + g2(q)u2 + g3(q)u3 (2.34)
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where

g1(q) =



−r

0

−sin(ψ)m
cos(vo)

−cos(ψ)

−sin(ψ)tan(vo)


, g2(q) =



0

−r
cos(ψ)m
cos(vo)

sin(ψ)

−cos(ψ)tan(vo)


, g3(q) =



0

0

0

0

−1


(2.35)

Using only three vector fields it is not possible to control the 5-output variables independently. To

make this achievable five vector fields are required. The controllability Lie algebra matrix (composed by

the model n vector field vectors) enables the model controllability study according to Chow Theorem.

This theorem states that if the controllability Lie algebra matrix (dimension m × n) is full rank, one can

control the m model outputs independently. For a Chow theorem proof see [26]. Using Lie bracket

operators it’s possible to compute two more vector fields from combinations of the existing ones.

The Lie bracket of two vector fields f and g is defined as,

[f, g](q) =
∂g

∂q
f(q)− ∂f

∂q
g(q) (2.36)

Lie algebra computations were performed with MATLAB® symbolic language easing Lie Algebra

bracket combinations calculations. Therefore, considering Lie bracket operators for the existing vector

fields in (2.33) it is possible to compute two new ones. Hence, if such vector fields combined with

the ones in (2.33) result in a full rank controllability Lie algebra matrix, then the model controllability is

proven. For simplicity let the sphere radius be unitary.

One example of a valid controllability Lie algebra matrix is defined as,

[
[g1] [g2] [g3] [g1, g2] [g1, [g1, g2]]

]
(2.37)

Which in its explicit form is given by,

0 −1 0 0 0

−1 0 0 0 0

−sin(ψ)
cos(vo)

cos(ψ)
cos(vo)

0 −(2sin(vo)(2sin2(ψ)−1))
(sin2(vo)−1)

cos(ψ)(16cos2(ψ)−12)−cos2(vo)cos(ψ)(12cos2(ψ)−11)
cos3(vo)

−cos(ψ) sin(ψ) 0 0 −sin(ψ)

−sin(ψ)tan(vo) −cos(ψ)tan(vo) −1 1 cos(ψ)tan(vo)


(2.38)

Computing (2.38) rank, one gets that it is equal to five, which as stated before proves that a sphere

actuated by three angular velocity inputs is controllable. It is also interesting to study the controllability

for the same system considering only two angular velocities inputs, for instance, wx, wy. Computing

matrix (2.39) rank, one finds that the system is also controllable.

[
[g1] [g2] [g1, g2] [g1, [g1, g2]] [g2, [g2, g1]]

]
(2.39)
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Nevertheless, a sphere motion controlled with only two angular velocities may show complex maneuver-

ing regarding its angular trajectory, which may be undesirable for the actuator system.

The sphere rolling on a plane controllability analysis presents a valid feasibility proof of the RSA

kinematic goals. Hence controlling the model three inputs (ωx, ωy, ωz) any trajectory and orientation of

the sphere rolling on a plane can be achieved.

2.3 Controllability of the Actuator System

This section illustrates the RSA actuator system analysis regarding its kinematic model and control-

lability. The actuator system controllability is determined according to the kinematic model analysis of

an equivalent holonomic mobile robot.

There are several types of holonomic actuators that could be considered for the RSA device. In

fact, this section describes a kinematic model for a mobile robot composed of holonomic wheels without

strictly specifying its roller axis angle or its wheel geometrical arrangement. Hence such model allows a

general kinematic analysis compatible with distinct RSA actuating systems.

Mobile robots generally differ in wheel type and geometrical wheel disposition. In fact, each distinct

mobile robot configuration yields different kinematic models, moreover [3] analyses mobile robot distinct

configurations and respective kinematic models.

Figure 2.7 shows a three-wheeled holonomic mobile robot with its wheel frames depicted. Let us

assume that each wheel rotational axis is fixed with respect to each other, and lie always parallel to the

fixed ground plane P described by k normal unit vector. Moreover each hth holonomic wheel is indexed

from 1 to N .

Figure 2.7: Three-wheel omnidrive robot (obtained from [11])

The ellipses represented in Figure 2.7 describe the wheel roller in contact with the ground plane P .

Furthermore the wheel roller axes unit vectors are defined as nγh : ‖nγh‖ = 1 and uγh : ‖uγh‖ = 1.

In fact, nγh denotes the wheel roller axis and uγh := nγh × k the wheel roller instantaneous tangent

velocity direction. Additionally the wheel hub axis unit vector (wheel main rotation axis) is denoted as
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nh : ‖nh‖ = 1. Whereas uh : nh × k denotes the wheel instant tangent velocity direction. Moreover

Figure 2.7 also illustrates each wheel position in the body fixed frame characterized by bh. Additionally

assume that all wheels have the same shape and radius ρ.

The holonomic mobile robot motion analysis considers the reference frame to be located at c (see

Figure 2.7), describing the robot movement. Hence let’s compute the mobile robot angular and linear

velocities of such reference frame with respect to an inertial frame. Consider vc to be the robot center

linear velocity and ωk to be its angular velocity. Whereas vector vh denotes the linear velocity at each

holonomic wheel frame. These vh velocities are given by:

vh = vc + ωk × bh (2.40)

See Appendix A for further details regarding (2.40).

For a perfect rolling situation, the velocity v = vh will be physically performed by the roller rotation

around nγh plus the wheel rotation around nh. Considering that nγh and nh are not aligned, i.e. γ 6=

(2υ + 1) · 90 deg, where v is an integer. The resultant velocity is given by,

vh = αuγh + βuh (2.41)

implying

nTh vh = α(nThuγ) (2.42)

nTγhvh = β(nTγhuh) (2.43)

where α and β are integers. Consequently combining these three equations yields,

vh =
nTh vh
nThuγh

uγh +
nTγhvh
nTγhuh

uh (2.44)

Note that for mobile robot inducing motion purposes, the first velocity term on the right hand side of

(2.44) depending on the roller rotation around nγh is completely passive. Therefore, only the second

term regarding the wheel rotation around nh is assumed to be actively produced by a motor. Assuming

a perfect rolling situation, the mapping between the joint speed q̇ and the corresponding hub velocity of

any wheel yields,
nTγhvh
nTγhuh

= ρq̇ (2.45)

where it is has been explicitly assumed that the contribution of vh in the direction of uh described in

(2.46) does not contribute to ρq̇.
nTh vh
nTuγh

uTγhuh (2.46)

Substituting (2.40) into (2.45), and having in mind that nTγhuh = −cosγ for any h wheel, it follows that,

− 1

cosγ
nTγhvc +

1

cosγ
nTγh S(bh) ~kω = ρq̇h (2.47)
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see (A.17) for further details regarding S(bh). Considering the vectors projection on a common body-

fixed frame with its third axis equal to k 6= P , the term nTγhS(bh)~k results in

nTγhS(bh)~k = nγxhbyh − nγyhbxh = −bThuγh (2.48)

A simplified model of (2.47) in a general matrix form, can be seen as,

M

vc

ω

 = ρq̇cosγ (2.49)

where

M = −


nγx1 nγy1 bT1 uγ1

nγx2 nγy2 bT2 uγ2
...

...
...

nγxN nγyN bTNuγN

 ∈ R
N×3 (2.50)

where vector q̇ ∈ RN×1 denotes the joint velocities vector. Equations (2.49) and (2.50) represent the

general kinematics model of a holonomic wheeled vehicle with N wheels. The kinematic model con-

trollability is related with the M matrix shape. Hence to prove that the system is in fact controllable two

conditions must be satisfied,

1. cosγ 6= 0

2. rank M = 3

Furthermore, the mobile robot desired motion can be computed as,

q̇d =
1

ρcosγ
M

vc

ωd

 (2.51)

The general holonomic mobile robot kinematic model and its controllability analysis verifies an equiv-

alent actuator system controllability. Note that, besides the actuator wheels angle γ, the wheel position

is also relevant to the kinematic model.

Furthermore a simple equilateral triangle wheel arrangement is proven to be controllable, see [3].

Hence such geometry is suitable for an RSA actuation system. Figure 2.8 illustrates the referred geom-

etry.

The kinematic models of both problems and their respective controllability enable us to establish a

connection between their results. Moreover the RSA controllability relies upon a logic reasoning consid-

ering both problems.

Subsection 2.2 shows the rolling sphere controllability when three non-coplanar angular velocity

vectors control the sphere motion. Additionally, such angular velocities are obtained according to an ac-

tuator system composed of holonomic wheels. Furthermore Subsection 2.3 defines a general kinematic

model framework and controllability analysis for distinct actuator systems, being an equilateral triangle

configuration a valid geometry. Hence since the actuator system wheels are in contact with the sphere
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Figure 2.8: Three-Swedish-wheel triangular mobile robot (obtained from [3])

surface which is parametrized by a single R2 regular map, by inference the actuation system can also

be controllable for a sphere surface. If it eases the understanding of this logic reasoning, consider an

infinitely large sphere and an actuator system in mechanical contact with its surface. Therefore since the

actuation system dimension is small compared to the sphere dimension, from an actuator point of view

the sphere surface appears to it as a plane surface, thus being controllable. For an actuator system and

sphere similar dimensions the actuators configuration must adapt the sphere surface being no longer in

a plane configuration, although being still controllable.

Mobile holonomic robot 

(Actuation System)

Rolling 

Sphere

q

Actuation 

System inputs

[ωx , ωy , ωz] 

Controllable Controllable

RSA Controllability 

Proven

Figure 2.9: RSA Controllability

Considering the previous reasoning, the RSA system controllability is proven, see Figure 2.9, i.e. the

RSA internal sphere is able to follow any angular motion and consequently produce reaction torques in

every direction.
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Chapter 3

Satellite Attitude Dynamical Model

and Control

Satellite attitude dynamic models analyses its motion behaviour with respect to control torques ap-

plied to its frame. Control torques are usually produced by reaction torque devices (RTDs), which for

this analysis are considered to be a RSA device or a RW arrangement.

Section 3.1 describes a satellite dynamical model computation without the RTD characterization.

Moreover such model requires a satellite attitude formulation. Hence three different attitude formulations

are analysed, stating their advantages and disadvantages. Quaternion notation is considered to be

suitable for satellite attitude description due to its computational benefits. Thereafter a SACS dynamical

model according to Euler’s equations is described. Consequently a feedback closed-loop scheme with

a simple PD control law ensures the satellite target attitude tracking. Simulink® software can be used

for simulating the referred model, see Chapter 4.

Section 3.2 characterizes RTDs used in satellite attitude control, namely a RSA and a RW arrange-

ment. The RSA actuator system geometry choice determines the RSA Jacobian. Therefore, due to

its geometrical balance benefits, an actuator system according to a regular tetrahedral geometry is

considered. The correspondent Jacobian for the referred geometry gives the actuators unique motion

combination for a desired sphere angular motion as well as prove the RSA singularity-free property.

Additionally, a brief explanation concerning a DC motor model suitable for being applied to a RSA model

is described. Consequently, the motor ”load sharing” problem is also covered presenting an important

RSA feature. Analogously to the RSA device, a similar approach for a RW arrangement is devised. Nev-

ertheless, oppositely to the RSA each RW angular motion is independent with respect to all others. For

redundant n RW arrangement (i.e. n > 3) there are several valid RWs motion combinations that fulfil a

given output torque. Therefore optimal criteria are required to choose one solution among all RW torque

combinations. Two distinct torque optimal criteria are usually used for redundant RW arrangements,

they are based upon the L2 and L∞ norms.
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3.1 Satellite Modelling

3.1.1 Satellite attitude

Satellite attitude control schemes allow satellites to reach target attitudes according to control torques.

Consequently is required to chose a satellite attitude formulation for SACSs.

Inertial Frame

xI

xs

yI

zI

ys

zs

xt

yt

zt

p

Figure 3.1: Satellite attitude reference frames

Figure 3.1 illustrates three frames describing the satellite attitude error problem. Frame [xI , yI , zI ]

refers to an inertial frame, whereas [xs, ys, zs] and [xt, yt, zt] are respectively the satellite current frame

and satellite target frame both with respect to inertial frame I. For simplicity the translational vector p is

assumed to be zero which means that the satellite geometrical center is coherent with the inertial frame

origin.

Rotation matrices [As] and [At] describe respectively the satellite current and target frames rotations

with respect to the inertial frame. Consider an arbitrary vector a = [ax ay az] defined in the inertial frame.

Using matrices [As] and [At] the referred vector can be described both in satellite and target frame as

follows,
as = [As]a

at = [At]a
(3.1)

Combining both equations in (3.1) yields,

as = [As][At]
−1at = [As][At]

Tat = [Ae]at (3.2)

If both vectors at and as are equivalent in satellite and target frame, then [Ae] becomes identity since

both frames coincide with each other. Matrix [Ae] is referred as the error attitude matrix, describing the

error between satellite current orientation and target orientation.

For further clarification, consider matrix [Ae] full expression described in (3.3).

[Ae] =


a11s a12s a13s

a21s a22s a23s

a31s a32s a33s


︸ ︷︷ ︸

[As]


a11t a21t a31t

a12t a22t a32t

a13t a23t a33t


︸ ︷︷ ︸

[At]
T

=


a11e a12e a13e

a21e a22e a23e

a31e a32e a33e

 (3.3)
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Consequently satellite current and target frames coincide when [Ae] off-diagonal elements become zero

and the diagonal elements become unity. Therefore, ensuring that a12e = 0, a13e = 0 and a23e = 0,

makes both the target and current satellite frames equivalent.

There are at least three distinct attitude descriptions for a given body frame with respect to an inertial

frame,

• Euler angles rotation matrix

• Euler axis of rotation between frames

• Use of quaternions to describe rotations

Euler angles, commonly known as roll-pitch-yaw (ϕ, θ, ψ) describe three independent rotations of a

body frame with respect to an inertial frame. These rotations are respectively about the x,y and z axes.

Furthermore a given body attitude can be described as a rotation matrix with respect to the referred

Euler angles. Despite being probably the most intuitive method, there’s an issue regarding Euler angles.

Euler kinematic equations may become singular1 for some angle sequences, this problem is commonly

know as gimball lock. Hence, this method is not suitable for the attitude control problem, since satellite

attitude is not confined to a given angle interval.

The second method describes an attitude using a single rotation vector. An important Euler’s theorem

states that any rotation between two frames can be described according to a single axis rotation, denoted

as Euler axis. Knowing the initial and target satellite orientations it is possible to compute the respective

Euler axis and its corresponding principal angle, see Appendix C for further details. Although having the

advantage of minimizing the angular motion path, the computation of the corresponding rotation matrix

can be computationally cost demanding since it requires to compute at least six error attitude matrix

elements at every instant of time, see [16].

Quaternion notation describes the satellite attitude also taking advantage of Euler axis theorem.

Although, when compared to Euler axis rotation matrix method, it has the benefit of requiring only

four components to describe the satellite attitude. Moreover it doesn’t contain any singularities. Thus,

quaternions are suitable for describing satellite attitudes.

3.1.2 Quaternion attitude description

This subsection describes a simple satellite attitude control law according to quaternion notation.

A satellite attitude closed-loop control scheme using quaternion notation requires an attitude error

matrix computation (3.3). Since quaternions can be related to a general rotation matrix, see (C.20), the

attitude error matrix (3.3) can easily be written with respect to quaternions.

Let qt be the target orientation and qs be the current satellite orientation, both written in quaternion

terminology. Therefore the attitude error matrix in quaternion notation can be defined as a quaternion

multiplication, described in (3.4) , see (C.23) for further details .

[A(qe)] = [A(qt)].[A(qs)]
−1 = [A(qt)][A(q−1s )] (3.4)

1A kinematic singularity is a point within the robot’s or device motion workspace where its Jacobian matrix loses rank.
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Expanding (3.4) with respect to quaternion components yields,

qt.q
−1
s = qe =


qt4 qt3 −qt2 −qt1
−qt3 qt4 qt1 −qt2
qt2 −qt1 qt4 −qt3
qt1 qt2 qt3 qt4




qs1

qs2

qs3

qs4

 (3.5)

where qe denotes the satellite error quaternion.

The satellite control law can be obtained considering the following relations between quaternion

components and direction cosine matrix components,

q4 = ± 1
2

√
1 + a11 + a22 + a33

q1 = 1
4 (a23 − a32)/q4

q2 = 1
4 (a31 − a13)/q4

q3 = 1
4 (a12 − a21)/q4

(3.6)

Hence, making ge = [qe1qe2qe3]T components equal to zero, both the target and the satellite frames

coincide. Therefore, a valid simple control law is given by a simple proportional derivative controller, see

(3.7).

τcx = 2Kxqe1qe4 +Kdxωx

τcy = 2Kyqe2qe4 +Kdyωy

τcz = 2Kzqe3qe4 +Kdzωz

(3.7)

The control law (3.7) will be considered for a SACS model described in Section 3.1.4.

3.1.3 Non-linear Model equations

Non-linear satellite dynamical model equations are obtained according to Euler’s equations, see

Appendix A.1.3 for a general Euler’s equations computation. Due to computational benefits, satellite

dynamical models are usually based upon quaternion terminology. See [4] for a similar SACS problem

approach, additionally another satellite attitude control scheme based in quaternions is described in [16].

Assuming no external torques, the satellite system dynamics is described as (3.8), see (A.26) for

further details.

ḣI = ḣB − ω × hB (3.8)

where hI and hB denote respectively the overall satellite system angular momentum with respect to an

inertial frame and the angular momentum described with respect to the satellite frame.

Let the satellite system dynamic equations be written with respect to the inertial frame. Consider

that τ = τs + τRTD and h = hs + hRTD refer respectively to torque and angular momentum sums of

the satellite and RTD. If external torques exist, they have to be accounted for, i.e. τs + τRTD = τext,

otherwise the torque and angular momentum sums of the satellite and RTD equal zero.
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Therefore the satellite dynamics general equation yields,

d

dt
(Js ω) + ḣRTD = τext − ω × (Js ω)− ω × hRTD (3.9)

where, τext denotes the total external torque. This can be written equivalently as,

ω̇ = J−1s ω × (Js ω)− J−1s (ω × hRTD)− J−1s ḣRTD + J−1s τext (3.10)

Matrix S(ω) , see A.17, simplifies the angular velocity cross product in (3.10), thus (3.10) can be written

as,

ω̇ = J−1s S(ω) Js ω − J−1s S(ω) hRTD − J−1s τctrl + J−1s τext (3.11)

Note that ḣRTD is assumed to be equivalent to τctrl.

Since satellite attitude is described with respect to quaternion notation, consider the quaternion time

derivative (3.12), see Appendix C for further details.

q̇ =
1

2
[Ω(ω)]q (3.12)

The satellite plant block diagram in Figure 3.2, describes the satellite behaviour according to (3.11).

This block diagram can be used in a Simulink® model for simulation purposes. Hence, the satellite plant

receives control torques as inputs which are generated from a given RTD. Consequently RTDs must be

analysed in order to characterize its composing components motion, see Section 3.2.

+ Js   
Ω(ω)   

1/2

S(ω)

-1

Js

+

τext

τctrl

hRTD

q

ω
 

ω
 

Satellite Kinematics

Satellite Dynamics

-1

Figure 3.2: Satellite plant block diagram

3.1.4 Attitude control closed loop

The concepts introduced in the last three subsections describe a satellite attitude dynamic model.

Furthermore, satellite target attitude tracking can be ensured by a simple feedback control scheme.
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Chapter 4 considers a generic PD control law (3.7) ensuring the satellite attitude convergence to any

attitude references. Figure 3.3 illustrates a satellite attitude feedback control scheme based upon control

law (3.7).

Considering a reference quaternion vector, qref as control scheme input, the quaternion error, qe

can be computed according to (3.5). In fact, ”Error quaternion computation” block illustrated in Figure

3.3 performs the computations described by (3.5) and ensures the satellite Euler axis angular trajectory

tracking. Consequently the quaternion error vector qe is fed to the controller in order to compute the RTD

requested output torque. The command control u is given to the ”Reaction Torque Device” block, where

all computations regarding RTD components motion are performed.
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Figure 3.3: Attitude control loop

This Section defined the required satellite model framework enabling the RSA performance analysis.

Section 3.2 describes both the RSA components motion and a RW arrangement. The characterization of

these two devices allows their inclusion into the satellite model enabling their performance comparison.

3.2 Reaction torque device systems

3.2.1 RSA device

Now that the RSA feasibility is proved it is required to compute the RSA output torque relation with

its composing components motion, i.e its internal sphere and actuators motion must be characterized.

The following analysis is conducted for an actuator system according to a regular tetrahedral geometry.

Nevertheless, the following expressions can be adjusted to other actuation system configurations. First,

it is required to verify if the adopted geometry guarantees the system static equilibrium.

Consider a RSA actuator system composed of four holonomic actuators having their contact points

over the sphere surface according to a regular tetrahedron vertices circumscribed in the sphere, see

Figure 3.4.
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Figure 3.4: Regular Tetrahedral geometry with actuator systeme

Since the RSA concept requires a internal sphere with three independent rotational DOF, the sphere

geometrical center must be static with respect to an inertial frame in the RSA outer shell, when the ac-

tuators contact is imposed. The static equilibrium can be verified considering to the following equations,

∑n
i Fi = 0∑n
i τi = 0

(3.13)

where Fi and τi denote respectively all the system forces and momenta. The static equilibrium proof

with n = 4 actuators disposed according to a regular tetrahedral geometry is described in Appendix B.1.

There are multiple actuators rotational vectors combinations that verify the RSA sphere static equi-

librium. Thus, a possible one is described as,
ω1x

ω1y

ω1z

 =


1
2 −

√
3
6

√
3
6 + 1

2

−
√
3

3

 ,

ω2x

ω2y

ω2z

 =


−
√
3

6 − 1
2

1
2 −

√
3
6

√
3
3

 ,

ω3x

ω3y

ω3z

 =


√
3
6 −

1
2

√
3
6 −

1
2

−
√
3

3

 ,

ω4x

ω4y

ω4z

 =


√
3
6 + 1

2
√
3
6 −

1
2

√
3
3

 (3.14)

For further details regarding the actuators hub axes vectors computation see Appendix B.2.

Figure 3.5 shows the adopted axes convention for each actuator reference frame. The wheel hub

axis or rotational axis corresponds to frame x axis, whereas the slip axis corresponds to y axis. The

following RSA analysis assumes the use of holonomic Swedish wheels with γ = π
2 , see Section 2.3.

Hence the computation of four actuator reference frames allows the determination of their corresponding

transformation matrices with respect to the sphere reference frame.

Figure 3.6 illustrates four actuators reference frames according to a regular tetrahedral geometry.

Additionally the sphere reference frame is also depicted in magenta. Each actuator frame is defined by

three axis, the hub axis (blue), the slip axis (red) and the normal contact vector axis (green). Let’s as-

sume that the sphere reference frame doesn’t follow the sphere motion and their axes remain static with

respect to an inertial frame defined in the RSA outer shell. Let’s assume static actuators for the present
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Figure 3.5: Actuator Reference Frame

analysis, i.e. their contact points location are invariant with respect to the sphere frame. Furthermore

[19] performs a similar characterization of a sphere in mechanical contact with holonomic wheels.
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Figure 3.6: Tetrahedral Actuator Reference Frames

Note that the following geometric vectors computations are all described with respect to the sphere

reference frame.

Let pi be actuator i contact point location and Ωs be the sphere angular velocity. For a given sphere

rotational motion, there’s an unique corresponding tangential velocity in the contact point between the

actuator i and sphere surface. This contact point tangential velocity can be determined as follows,

Vi = Ωs × pi (3.15)
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For holonomic wheel actuators, the contact point tangential velocity can be decomposed in two actuator

velocity components, namely the hub axis and slip axis components. Therefore, Vi can be written as

follows,

Vi = Vi hub · v̂i hub + Vi slip · v̂i slip (3.16)

where, v̂i hub and v̂i slip denote respectively the actuator hub axis and slip axis unit vectors, whereas

Vi hub and Vi slip refer respectively to their magnitudes. The following model assumes a no-slip situation

where the contact point tangential velocity between the actuator and sphere surface is equivalent both

in the sphere frame and the actuator frame. This assumption can be easily defined as,

(Ωs × pi) · v̂i hub = Vi hub (3.17)

Cross product properties let (3.17) be written equivalently as,

(pi × v̂i hub) · Ωs = Vi hub (3.18)

Since all actuators contact points lie in the sphere surface, their contact position vector norm is equivalent

to the sphere radius, denoted as Rs. Thus, pi = Rs p̂i, where p̂i is the actuator i contact point unit vector,

thus (3.17) yields,

(p̂i × v̂i hub) · Ωs =
Vi hub
Rs

(3.19)

The sphere rotational motion can be described with respect to the actuator rotational motion, thus con-

sider the relation between the actuator contact point tangential velocity and the actuator rotational ve-

locity (3.20).

Vi hub = ωiRw (3.20)

where, ωi and Rw refer respectively to the actuator angular velocity and the actuator wheel radius.

Substituting (3.20) in (3.18) yields,

(p̂i × v̂i hub) · Ωs =
ωi
Rs

Rw (3.21)

Considering actuator i hub axis rotational unit vector (p̂i × v̂i hub as ŵi ), (3.21) can be expanded for

three actuators as follows, 
ŵT1

ŵT2

ŵT3

Ωs = k


ω1

ω2

ω3

 (3.22)

where, k denotes the transmission gear ration defined as k = Rw

Rs
.

W =
[
ŵ1ŵ2ŵ3

]
(3.23)

Matrix (3.23) will be referred as the distribution matrix, describing how the sphere angular motion is

converted with respect to each actuator frame. Hence, the actuators angular velocity can be computed
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according to, 
ω1

ω2

ω3

 =
1

k


ŵ1x ŵ1y ŵ1z

ŵ2x ŵ2y ŵ2z

ŵ3x ŵ3y ŵ3z


︸ ︷︷ ︸

WT


Ωx

Ωy

Ωz

 (3.24)

Note that, similarly to distribution matrix WT an analogous matrix for the actuators slip axis can be

computed.

There’s now sufficient information to define the system Jacobian 2. For the present case, the sphere

motion corresponds to the end-effector. Hence the Jacobian (denoted as J) is depicted in (3.25).

Ω = k
[
WT
]−1

︸ ︷︷ ︸
J


ω1

ω2

ω3

 (3.25)

The Jacobian has the property of being time-invariant, since it only relies on the system constants (i.e.

the actuators position coordinates and ratio k). Therefore, it can also be used for angular acceleration

terms, see (3.26).

Ω̇ = Jω̇ (3.26)

Furthermore, the RSA Jacobian can be also used to relate the sphere and actuators torques. Note

that the conversion from torques to angular acceleration depends upon the constant body inertia tensor

(which is usually constant), see (A.22) for further details.

The sphere torque τs is obtained from a linear combination of actuators torque coefficients τwi multi-

plied by their respective actuator hub axis unit vectors. Hence in matrix form, this follows as,

τs = Jτw (3.27)

Furthermore, the inverse Jacobian (3.28) relates the sphere angular motion with the actuators angu-

lar motion.

J−1 =
1

k
WT (3.28)

For n > 3 actuators, matrix WT is no longer a 3× 3 square matrix and therefore its normal inverse is

not feasible, having implications regarding the Jacobian computation. Nevertheless, non-squared ma-

trices inverses can be computed according to pseudoinverse methods. The most common is known as

the Moore-Penrose pseudoinverse. Thus, the RSA Jacobian computation is feasible for n > 3 actuators,

e.g. an actuator system according to a regular tetrahedral configuration.

An important property regarding this RSA geometry Jacobian concerns the fact of it being singularity

free, when WT matrix is full rank. Thus a RSA with an actuator system according to a regular tetrahedral

configuration can induce any angular motion to the RSA internal sphere.

2By definition, the Jacobian matrix relates the joint coordinates motion variations with the end-effector coordinates motion.
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The RSA Jacobian also shows that a sphere motion results in an unique motion for all actuators in

mechanical contact with its surface, see (3.24), thus implying that actuators motion must be synchro-

nized. Such imposition has consequences for the motors actuating the holonomic wheels. Moreover

such motor motion dependencies must be accounted for motor models. Appendix E shows a brief

analysis regarding a simple DC motor model.

Implementing DC motor models in a simulation environment requires their adjustment to the load

physical properties, such as gear ratios and load inertia reflected in the motor frame. Furthermore,

each motor model must account for the torque that all other motors perform at each instant in its frame.

Such computation can be performed considering all motors transformation matrices with respect to each

other, thus each motor torque should be described in every motor frame at every instant. Consequently

at every time instant each motor sees a load torque, τL, see Figure E.2, corresponding to the torque

sum that all remaining motors perform in its frame. These motor torques frame transformations can also

be seen as simple torque projections upon each motor rotational axis. This effect is commonly known as

motor ”load sharing” describing the cooperation between motors to achieve the desired sphere torque.

Consequently when a RSA with more actuators is considered, the total actuator motors energy will be

approximately equal differing only in how the load/energy is shared over all motors.

3.2.2 Reaction wheels arrangement device

RW arrangements are commonly used in satellites to produce reaction torques. A RW arrangement

comprises a set of n RWs composed of an inertia disk actuated by an electrical motor. One important

feature that distinguishes RWs devices from a RSA device, refers to the possibility of controlling each

RW independently.

The torque produced by each RW is applied to the satellite frame according to its hub axis vector.

Note that since RWs torques are independent, the overall torque applied to the satellite is given by the

sum of all the RWs torque vectors. Hence, assuming that a RW i has its hub axis unit vector defined as

ŵrwi, the overall control torque applied to the satellite is obtained according to (3.29).

τctrl =
[
ŵrw1 ŵrw2 · · · ŵrwn

]
︸ ︷︷ ︸

Wrw


τrw1

τrw2

...

τrwn


︸ ︷︷ ︸
τrw

(3.29)

where τrw and τctrl refer respectively to RWs torque coefficients and control torque applied to the satel-

lite. Therefore, the Wrw distribution matrix (dimension 3 × n ) relates the RWs torques with the control

torque applied to the satellite. The following expressions assume the RWs hub axis unit vectors, ŵrwi to

be all non coplanar with respect to each other.

For RWs arragements composed of three RWs, matrix Wrw has 3 × 3 dimension and is full rank,

meaning that the problem solution is uniquely defined. Consequently matrix Wrw has a well defined
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inverse matrix, see (3.30). 
τrw1

τrw2

τrw3

 = W−1rw .τctrl (3.30)

For redundant RWs arrangements the problem is no longer uniquely defined, since matrix Wrw is no

longer a square matrix. Consequently a optimal criterion is required to choose between one among all

RWs torque combinations for a given control torque vector.

There are mainly two optimal criteria adopted to find RWs arrangements solutions, they are based

upon the Euclidean norm (L2) and the Frobenius norm (L∞) optimization. The Euclidean norm opti-

mization is addressed via the Moore-Penrose pseudoinverse, whereas the Frobenius norm optimization

is addressed via a torque envelop minmax problem, see [23] for a detailed analysis.

For energy comparison purposes, the L2 optimization attains better results, see [23]. Hence, in chap-

ter 4 only this optimization method is considered. For further details regarding RWs torque distribution

with respect to Moore-Penrose pseudoinverse see Appendix D.

This Section defined the equations characterizing both RTDs dynamics, which are considered in

Chapter 4. Hence, if a Simulink® environment is used for simulations purposes, the RTD block should

include the respective RTD dynamics (e.g. Jacobian and motor dynamics).
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Chapter 4

Results

This chapter analyses the results for a satellite attitude dynamical Simulink® model.

Section 4.1 shows the satellite attitude control scheme maneuvering neglecting RTDs. In other

words, this means that the control torque computed by the PD control law is directly applied to the

satellite frame. Therefore, verifying a set of attitude references simulations the SACS attitude reference

tracking convergence can be analysed.

Section 4.2 shows a Simulink® SACS model with a RTD inclusion in order to describe reaction torque

generation. Furthermore the RTDs components motion description, enables an energy consumption

comparison of both RTDs, namely a RSA and a RW arrangement. There are several RTDs valid config-

urations varying in actuators number, geometry and physical parameters. Therefore, to allow a general

analysis for both RTDs performance, an approach considering some RSA and RW arrangements config-

urations is performed. Comparing both RTDs having equivalent physical parameters (equivalent mass

and volume) it is possible to show the RSA benefits compared to RW arrangements .

The models used in this chapter neglect systems losses, disturbances and uncertainties, i.e. param-

eters such as friction coefficients, slippage in mechanical rolling contact, attitude estimation uncertainties

and others. Consequently, this Chapter goal is to compare both RTDs performance from a general point

of view allowing to state valid conclusions regarding their ideal performance. Nevertheless, Section 4.3

depicts some negative factors affecting both the satellite and RTDs, which cannot be neglected in a real

world environment.

4.1 Satellite attitude control scheme without a RTD

SACS Simulink® model validation concerns a serie of satellite attitude maneuverings simulations in

order to verify the SACS dynamics and control strategy performance.

Satellite target attitude is described according to Euler angles (ϕ, θ, ψ), due to their ease in visual

attitude perception. Nevertheless, SACS computes the satellite attitude based upon quaternion notation.

Figure 4.1 illustrates the SACS Simulink® model without a RTD block between the PD controller and

satellite plant.
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Figure 4.1: Simulink® Model

SACS Simulink® model simulation requires some satellite plant physical parameters definition, see

Table 4.1.

Table 4.1: SACS model without RTD simulation parameters

Parameter Value (SI units)

Satellite Inertia Tensor Matrix [Kg m2]

2 0 0

0 2 0

0 0 2


External Torque vector [Nm]

[
0 0 0

]T
Satellite initial attitude quaternion

[
0 0 0 1

]T
Satellite initial angular velocity [rads−1]

[
0 0 0

]T
Satellite initial angular momentum [Nms]

[
0 0 0

]T
Proportional Gain Kp = −2

Derivative Gain Kd = −2

Consider a satellite attitude maneuvering simulation for a z axis (yaw) rotation of ψ = π
4 , illustrated in

Figure 4.2, where Figure 4.3 shows the respective satellite convergence to the reference attitude. In fact,

the satellite attitude converges to the desired quaternion attitude, qr =
[
0 0 0.3827 0.9239

]
, with a

settling time of approximately ts = 12.3s. Moreover the SACS settling time is determined by the satellite

control gains. Consider the same ψ = π
4 rotation, where proportional and derivative controller gains have

been increased to Kp = −4 and Kd = −4 in order to denote the satellite settling time decrease. Figure

4.4 shows the referred SACS simulation results denoting the referred settling time decrease to ts = 5.0s.

Note that, the SACS settling time and dynamic response also varies according to other parameters, such

as the satellite inertia tensor, the satellite initial parameters and external disturbances. Figures 4.5, 4.6

and 4.7 show the SACS convergence for distinct references attitudes. Despite being non intuitive to

analyse a graph with more than one angular velocity components, the angular velocity components sum
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Figure 4.3: Yaw rotation of ψ = π
4 SACS simulation (with Kp = Kd = −2)

corresponds to the Euler axis, which ensures the minimum angular path performed by the satellite, see

Appendix C.

The previous results illustrate the SACS convergence for some reference attitudes, in fact, this con-

vergence is verified for any other reference attitudes. Hence since SACS is well behaved let us consider

a RTD inclusion into the SACS, see Section 4.2.

4.2 RTDs comparison for a satellite attitude control scheme

This Section illustrates a SACS Simulink ® model concerning two distinct RTDs, namely a RSA and a

RW arrangement. The performance attained by each RTD depends upon their physical parameters, thus

in order to state a valid comparison, their physical parameters must be equivalent. In other words, their

physical mass and dimensions must be equivalent. This assumption allows a general RTD performance
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Figure 4.4: Yaw rotation of ψ = π
4 SACS simulation (with Kp = Kd = −4)
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Figure 4.5: Rotation of [ϕ = π
2 , θ = −π2 , ψ = 0] SACS simulation (with Kp = −2 and Kd = −2)

comparison regarding only the actuators geometry benefits and neglecting losses or disturbances.

The comparison of both RTDs requires the choice of a given performance measurement metric.

Consequently consider both devices energy consumption measurement, allowing to state valid conclu-

sions about their performances. Equivalently changing RTDs physical parameters and setting an energy

consumption limit would result in the same conclusion, although instead of being in energy units it would

be with respect to mass, volume or other physical parameter.

For simplicity and allowing the results to be the most general possible, the energy spent by each RTD

is described with respect to the mechanical work done by each RTD composing rigid bodies. Concerning

the RSA, let the mechanical work performed by the sphere be the RSA energy measurement. Whereas

for a RW arrangement let the sum of the mechanical work performed by each RW rotating disk be the
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Figure 4.6: Rotation of [ϕ = π
2 , θ = −π4 , ψ = 0] SACS simulation (with Kp = −2 and Kd = −2)
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Figure 4.7: Rotation of [ϕ = 7π
4 , θ = − 7π

3 , ψ = 5π
6 ] SACS simulation (with Kp = −2 and Kd = −2)

RW arrangement energy measurement. This work-energy equivalent analysis follows the Work-Energy

principle, see [8] for a Work-Energy principle definition.

The mechanical work of a rigid body in rotational motion is given as,

W = τθ (4.1)

where, θ denotes the rigid body angular displacement. Equivalently one can consider the mechanical

power at each time instant and compute its time integral. Consequently, the mechanical power for

rotational motion is given by,
d

dt
W = τω (4.2)
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Comparing the mechanical work expended by both RTD’s angular motions, it is possible to state which

one is more efficient in energy terms. Furthermore in an ideal situation the RTD energy would corre-

spond to actuators motor energy, verifying (4.3). This means that the DC motors power applied to the

inertia load (rotating bodies) would be totally converted into mechanical power.

Pmotors = Pm (4.3)

The present SACS includes a motor dynamics block, which can determine the rigid bodies angular

motion transient responses, see Appendix E for further details. Nevertheless the following simulations

don’t account for such responses since they would not have considerable impact upon the mechanical

work result.

The valid comparison of both RTDs implemented in a SACS requires the definition of the overall

simulation parameters. Furthermore RTDs physical parameters must be equivalent as referred above.

Henceforth Table 4.2 states SACS Simulink ® model simulation parameters. Note that hollow bodies are

considered for both RTDs since they allow higher inertia moments. The RTD’s components mass and

dimension have a critical impact in both RTDs performance measurement. Therefore, it is assumed that

both RTDs have equivalent masses and volumes.

Table 4.2: SACS model simulation parameters

Parameter Value (SI units)

Satellite Inertia Tensor Matrix [Kg m2]

3 0 0

0 3 0

0 0 3


External Torque vector [Nm]

[
0 0 0

]T
Satellite initial attitude quaternion

[
0 0 0 1

]T
Satellite initial angular velocity [rads−1]

[
0 0 0

]T
Satellite initial angular momentum [Nms]

[
0 0 0

]T
Proportional Gain Kp = −5

Derivative Gain Kd = −5

Hollow Sphere Mass [Kg] 1

Hollow Sphere outer Radius [m] 0.1

Hollow Sphere inner Radius [m] 0.09

Hollow Disk Mass [Kg] 1
3

Hollow Disk outer Radius [m] 0.1

Hollow Disk inner Radius [m] 0.09

Hollow Disk Height [m] 0.1

The simulations concerning distinct RTDs require distinct Simulink® models, although here only the

SACS Simulink ® model with RSA is illustrated, see Figure 4.8. Nevertheless it can be seen that both

RSA and RW arrangement blocks are similar, see Section 4.2 for further details. Considering Figure
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4.8 model, the RTD block receives a torque vector computed by the PD control law according to the

quaternion error and converts it into the sphere actuator wheels frames. This conversion is performed

according to the RSA Jacobian, see (3.26).

Figure 4.9 shows the RSA block (RTD block) concerning four actuators. Moreover, angular acceler-

ations are obtained by multiplying the control torques by the RSA sphere inertia tensor (Jsphere). Con-

sequently the RSA Jacobian computes the actuators angular motions. Alternatively the RSA Jacobian

can be also used to find the actuators torques, see Section 3.2. Furthermore in an ideal situation, any

actuator angular motion can be fulfilled, although in a real case such motions are constrained by several

parameters such as, motor physical limitations, slip occurrence and others. Note that such parameters

could be considered in motor dynamics block.

Since this thesis aims to show a general result, an ideal situation is considered, thus not making use

of the motors dynamics or other losses. A similar procedure occurs for the RTD block characterizing RW

arrangements.
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Figure 4.9: RTD block

The following SACS Simulink ® model simulations assume the following RTDs conditions,

• The total RW arrangement mass equals the RSA sphere mass.

• Each RW radius is equivalent to the sphere radius.

• Both RSA and RWs are hollow in order to increase its moment of inertia for a given mass, therefore

both bodies have inner and outer radius referred as rin and rout.

Let the RSA be composed of a 10 cm radius sphere with 1 Kg mass and shell cross section thickness

of 1 cm. Therefore an equivalent RW arrangement would be composed of three disks each with 10 cm
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radius, cross section thickness 1 cm and mass equal to 1
3 Kg. The RW disk height does not affect the

reaction torque outcome, therefore it would be equal to 1
3 of the sphere radius allowing a total volume

equivalence, see (4.5). Consequently, a four RW arrangement would have 1
4 Kg mass for each RW.

Furthermore, both generic RTD’s inertia tensors yield,

Js =


2
5 ·ms ·

r5s(out)−r
5
s(in)

r3
s(out)

−r3
s(in)

0 0

0 2
5 ·ms ·

r5s(out)−r
5
s(in)

r3
s(out)

−r3
s(in)

0

0 0 2
5 ·ms ·

r5s(out)−r
5
s(in)

r3
s(out)

−r3
s(in)

 (4.4)

Matrices (4.4) and (4.5) show that a hollow sphere has larger moments of inertia assuming a mass

equivalence.

Jw =


1
2 ·mw · (r2w(out) + r2w(in)) 0 0

0 1
12 ·mw · 3(r2w(out) + r2w(in) + h2w) 0

0 0 1
12 ·mw · 3(r2w(out) + r2w(in) + h2w)


(4.5)

Let h2w denote the reaction wheel disk height.

Assuming Table 4.2 values, the RSA sphere and each RW (considering a RW arrangement com-

posed of four RWs) have the following inertia tensors,

Js =


0.0060 0 0

0 0.0060 0

0 0 0.0060

 [Kg m2] (4.6)

Jwi =


0.0024 0 0

0 0.0006 0

0 0 0.0006

 [Kg m2] (4.7)

Consequently, analysing both RTD inertia tensors (4.6) and (4.7), it is expected that the RSA requires

less angular motion compared to a RW arrangement in order to produce the same amount of reaction

torque.

The following simulations show both the RSA and RW arrangement performance for some desired

satellite attitude maneuvers. Moreover two RW arrangements configurations are considered. Therefore

the following three distinct RTDs are analysed:

• RSA with four active actuators in a tetrahedral geometry.

• RW arrangement with three reaction wheels in an orthogonal disposition

• RW arrangement with four reaction wheels in a tetrahedral geometry (L2 optimization).

Figures 4.10, 4.11 and 4.12 denote a ϕ = 3π
4 satellite attitude maneuvering for the referred three

distinct RTDs. It’s easily seen that for all cases the satellite converges to the desired attitude.
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Figure 4.10: SACS with RSA, rotation of ϕ = 3π
4

For simplicity it’s assumed an unitary gear ratio between the RSA actuators radius and sphere radius.

Note that both RW arrangement configurations (Figure 4.11 and 4.12) reach higher angular velocity

values compared to RSA. These are a consequence of the RW inertia tensor, as it will be seen further

ahead.

The RTDs mechanical work and attitude convergence times corresponding to Figures 4.10, 4.11 and

4.12, are denoted in Table 4.3.

Table 4.3: SACS simulation for RTD mechanical work comparison, ϕ = 3π
4 rotation

RTD type Mechanical work Convergence time

RSA with four actuators (tetrahedral configuration) 348 Joule 10 s

Three RW arrangement (orthogonal configuration) 664.3 Joule 10 s

Four RW arrangement (tetrahedral configuration) 664.3 Joule 10 s

Applying equal controller gains for both RTDs simulations, the SACS ensures that each RTD pro-

duces the same reaction torque. For instance, for a ϕ = 3π
4 satellite attitude maneuvering it can be seen

that the produced reaction torques are equivalent for both RTDs, see Figure 4.13.

Therefore, since each RTD ensures the same torque production and requires distinct mechanical

work values to achieve it, is clear that their performances in energy terms are not equal. Furthermore
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Figure 4.11: SACS with three RWs, rotation of ϕ = 3π
4

Table 4.3 shows another important aspect regarding RW arrangements. Balanced1 geometrical RW

arrangements have the same mechanical work to perform a given satellite attitude maneuvering. Hence,

RW arrangements with balanced geometries differ only in maximum torque capability and RW failure

tolerance.

Table 4.4 shows both convergence time and mechanical work values expended by each RTD for

additional satellite attitude maneuverings. Additionally since balanced RW arrangements spend the

same energy, only a four RW according to a regular tetrahedral geometry is illustrated.

Inspecting the obtained results the RSA energy efficiency can be compared to RW arrangements.

It becomes now clear that there’s a constant relation between the RSA mechanical work and equiva-

lent RW arrangement. The RSA mechanical work reduction compared to the RW arrangement comes

strictly from its inertia tensor matrices. The SACS controller ensures that both RTDs apply the same

reaction torque to the satellite, thus since their inertia tensors are distinct they require different angular

accelerations resulting in distinct total angular displacements for the same convergence time. Hence the

relation between the RSA and RW arrangement mechanical work is equivalent to,

K =
WRW

WRSA
=

∑
Jrw ii∑
Js ii

(4.8)

1Balanced geometries correspond to have a fixed relation between all RWs rotation axis, see (B.10)
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Figure 4.12: SACS with four RWs (L2 optimization), rotation of ϕ = 3π
4

Time [s]
0 5 10 15 20 25 30 35 40

T
or

qu
e 

[N
m

]

-0.5

0

0.5

1

1.5

2

RSA
RW arrangement

Figure 4.13: Reaction torque applied to the satellite for both RTDs for a ϕ = 3π
4 rotation

where Jj ii denote each j body principal moment of inertia. Note that this expression is only valid assum-

ing that both RTD inertia tensors are diagonal. Considering Table 4.2 and assuming a RW arrangement
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Table 4.4: Additional SACS simulations for RTD mechanical work comparison

RTD type Mechanical work Convergence time

φ = π
2 rotation

RSA 285 Joule 8.1 s

RW arrangement 544 Joule 8.1 s

ϕ = π
6 , θ = π

3 rotation

RSA 198.7 Joule 7.4 s

RW arrangement 373.5 Joule 7.4 s

θ = π
3 , ϕ = −2π

7 rotation

RSA 240.9 Joule 7.6 s

RW arrangement 459.8 Joule 7.6 s

composed of four RWs this value yields,

K =
4× 0.0024

3× 0.0060
≈ 240.9

459.8
≈ 198.7

373.5
≈ 285

544
≈ 0.53 (4.9)

Note that the same result would be obtained if a RW arrangement composed by three RWs was con-

sidered. Therefore, the RSA with a hollow sphere spends approximately half the energy to produce the

same torque generated from a RW arrangements.

Additionally for a RSA composed of a solid sphere it would be still more energy efficient compared

to the same RW arrangement. The solid sphere inertia tensor is given by (4.10).

Js solid =


2
5 ·ms · r2s 0 0

0 2
5 ·ms · r2s 0

0 0 2
5 ·ms · r2s

 (4.10)

Hence for a solid sphere with 1 Kg mass and 10 cm radius, the energy gain compared to the previous

RW arrangement is given by (4.11).

K =
4× 0.0024

3× 0.0040
= 0.8 (4.11)

Therefore, even if the RSA sphere is solid which has lower moment of inertia compared to a hollow one

it is still more energy efficient compared to a RW arrangement.

Hence, in general the RSA is more energy efficient compared to a RW arrangement, or equivalently

it can be lighter compared to a RW arrangement, for the same reaction torque production.

4.3 RTDs physical construction constraints

The previous two Sections, 4.1 and 4.2 assumed an ideal environment, thus not considering uncer-

tainties, losses or external forces affecting the satellite and RTDs models. Therefore, despite this study

doesn’t analyses such factors, they may have significant impact upon this thesis results.
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Section 3.1 describes a generic satellite model which can consider external torques applied to the

satellite (e.g. solar radiation pressure, gravity gradient, particle collision with the satellite and others).

Furthermore, it is assumed that the satellite attitude is fully known, not corresponding to a real-world

situation. Hence a satellite attitude estimation strategy must be defined and considered.

Concerning RTDs, there are also factors that affect their performance. Regarding the RSA, it is

assumed that there are mainly four factors that could have a negative impact upon its performance,

namely:

• Rolling mechanical contact slippage between the actuators and the sphere surface

• Non-uniform spherical mass (i.e. a non-diagonal sphere inertia tensor)

• Actuation system DC motor motion de-synchronization

• DC Motor disturbances

The RSA sphere and actuators materials may probably have a considerable impact upon the RSA per-

formance. Thus, the materials should be chosen in order to minimize the actuators slippage behaviour.

Furthermore, since it does not exist a real prototype of a RSA, there’s not any information about how

each constraint affects its real performance.

Regarding RW arrangements, there are mainly two issues, namely:

• RW disk mass unbalance (i.e. a non-diagonal RW inertia tensor)

• DC motor disturbances

These two factors may have a negative impact upon the RW arrangement performance. Note that,

although there are similarities between both RTDs physical construction constraints, they may have

different impacts on both RTDs performances. Thus a real-word comparison of both RTDs should be

considered to verify this thesis theoretical results.
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Chapter 5

Conclusions

This thesis conducted a study regarding a new reaction torque device concept, the RSA. This study

covers the device feasibility proof and its benefits compared other RTDs. The referred feasibility study

considers three stages, proving different RSA features and allowing distinct conclusions.

The first stage concerns the RSA motion capability, i.e prove that it is feasible in kinematic terms (

see Chapter 2). The rolling contact kinematics concepts were particularly useful to describe mechanical

rolling contact between the actuator system and the sphere surface. In fact, these concepts could be

applied to describe spheroids besides the spherical one, and study their kinematic model.

The RSA kinematic analysis division in two steps, namely the rolling sphere on a plane and mobile

holonomic robot, simplified the RSA overall study. If such approach was not considered, it would be

required to compute the holonomic wheel surface geometric parameters which would demand several

mappings leading to a more complex model.

Given that both the rolling sphere and mobile robot move on a plane surface and are both controllable,

their combination, i.e. the actuator system in mechanical contact with the sphere surface can induce

any angular motion to the RSA sphere. This result proves the RSA feasibility in kinematic terms partially

supporting the intuition that motivated this device study.

Chapter 3 illustrates a RSA example concerning an actuation system according to a regular tetra-

hedral geometry. Note that several different actuator system geometries could have been analysed,

however only the regular tetrahedral geometry was considered for this thesis. The tetrahedral config-

uration showed to be a RSA suitable configuration, being an balanced arrangement and ensuring the

RSA sphere static equilibrium (stage two). Furthermore, the static equilibrium proved a RSA important

feature, the sphere geometrical center remained fixed with respect to a given inertial frame in the RSA

outer shell, allowing sphere pure rotation motions.

The RSA Jacobian describes the actuators motion with respect to the sphere motion. The Jacobian

analysis showed the RSA singularity-free feature (stage three) and the actuators unique combined mo-

tion for a given sphere angular motion. With such analysis the RSA could be fully described concerning

its composing bodies motion when a given reaction torque was demanded. Consequently these three

stages prove the RSA device feasibility.
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The RSA performance comparison to other RTDs, such as RW arrangements considered a simu-

lation environment capable of testing each RTD. Furthermore a SACS Simulink® model considering a

RTD device, provided a better grasp of the satellite behaviour concerning RTDs operation. Such model

aimed to represent a simple yet complete SACS simulator which could be constantly improved by the

inclusion of additional effects. Nevertheless, this study considers only the satellite and RTD general

dynamics since it is intended to perform a general RTD comparison neglecting losses and disturbances.

The RTDs performance metric choice considers an energy consumption in terms of mechanical work.

Other alternatives could have been considered, although they would be consequences of this main result

and probably require the definition of other physical parameters, such as motor specifications, friction

between surfaces and others. Hence the energy analysis confirmed the advantages of a RSA device

compared to RW arrangements when both RTDs were implemented in the same SACS model. The

results obtained in Chapter 4 showing the RSA energy consumption to be approximately half compared

to one spent by RW arrangements prove the intuition regarding the RSA benefits.
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5.1 Future Work

The present thesis considers a RSA device introductory analysis. Therefore, there’s a vast number

of studies that could be performed in future work. For simplicity consider the following list containing

some future work topics:

• Analyse and model the Holonomic wheels slip behaviour.

• Compare distinct holonomic wheels types performance.

• Describe the friction contact force between the actuators and sphere surface for different reaction

torques generation intervals.

• Consider a set of specific DC motors and their control law. Analyse the required motor synchroniza-

tion and what effects it could have in the RSA performance if such synchronism was not achieved.

• Compare different actuator systems geometries and their consequences for motor load sharing

and actuator failure tolerance.

• Define a strategy for the sphere motion observability.

• Study the advantages and disadvantages of considering a non-spherical body for reaction torque

production.

• Study the feasibility of a support/suspension system coupling the actuation system to the RSA

outer shell and what benefits could it have in reducing motor de-synchronization as well in adapting

to other rotating bodies geometries, see Figure 5.1.

• Build a RSA prototype and measure its real performance verifying if the same energy efficiency is

valid in a real world situation.

Figure 5.1: RSA actuating system with support/suspension system

The referred topics consist in some problems that could be analysed to continue this RSA study.
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Appendix A

Rotational mechanics fundamentals

A.1 Theoretical Concepts of Classical Mechanics

This Appendix shows some classical mechanics concepts, consisting of the required theoretical

background for RTD dynamics understanding.

Some principles and concepts presented in this Appendix are analysed in more detail in [1] and [14].

A.1.1 Newtonian Mechanics

Newtonian Mechanics allow the motion study of point masses systems in a three-dimensional Eu-

clidean space R3. Furthermore, it characterizes forces both in translational and rotational motion.

For satellite attitude motion analysis purposes, translational movements can be neglected since the

satellite and therefore the RTD are in torque-free situation, where only rotational movements are of

concern. Newtonian Mechanics relies upon three main laws describing essentially the dynamics of body

non-relativistic motions. The proof of such laws is not considered here, but only their final result, for

further details see [1] and [14].

Consider respectively the first second and third Newton laws.

• If no external forces are applied to a given body, it either remains at rest or continues to move at a

constant velocity when it is observed from an inertial reference frame.

• The force acting on a given particle or body is defined by

F = ma =
d2x

dt2
(A.1)

• Consider the interaction between two particles 1 and 2. For a force F12 = m1a1 on particle 1 due

to the presence of particle 2 (or by particle 2). Similarly, there is a force F21 = m2a2 on particle 2

by particle 1. Which corresponds to writing that,

F12 + F21 = 0 (A.2)
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It is also important to describe a system according to a energy analysis, hence assuming a constant

system energy (conservation of energy principle), one can write that,

E = T + U (A.3)

where E denotes the system total energy and T and U denote respectively the kinetic and potential

energy.

The RTD dynamics study demands the understanding of angular momentum concept and its conser-

vation law. Usually one is acquainted with the notion of linear momentum p for a given particle of mass

m moving at velocity v according to a translation trajectory.

p = mv (A.4)

According to conservation of energy principle, a system composed of two isolated particles has its

particle linear momenta sum constant. Analogously there’s also an angular momentum conservation for

rotational motions. The angular momentum h of a particle about some point S is defined in terms of its

(linear) momentum p as follows,

h = x× p (A.5)

Where x is the object position measured from the point S. Equivalently, (A.5) yields,

h = mω (A.6)

where ω denotes the particle angular velocity defined as ω = x× v.

Considering (A.5) time derivative, it yields,

ḣ = ẋ× p+ x× ṗ = v × p+ x×ma (A.7)

The first cross product in (A.7) can be written as,

v × p = v ×mv = m(v × v) = 0 (A.8)

thus,

ḣ = x× F = τ (A.9)

where τ denotes a torque about point S. (A.9) shows a very important aspect regarding RTDs basic

principle operation. Thus, due to angular momentum conservation, if a particle angular momentum

changes so the remaining particle angular momentum change in opposite direction.
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A.1.2 Rigid Bodies

Let q be a Cartesian vector relative to an inertial coordinate system k (which is assumed to be

stationary), and Q a Cartesian vector of the same point relative to a moving coordinate system K.

Definition: Let k and K be oriented Euclidean spaces. A motion of K relative to k is a mapping

smoothly depending on t:

Dt : K → k (A.10)

which preserves the metric and orientation. This motion Dt can be decomposed as the product of a

rotation Bt and translation Ct as seen in Figure A.1.

Figure A.1: Decomposition of motion Dt

Moreover, let k be a stationary coordinate system and K be a moving one, where q(t) ∈ K is a

moving point vector relative to the stationary system k, defined as,

q(t) = DtQ(t) = BtQ(t) + r(t) (A.11)

and Q(t) denotes the point vector relative to the moving system K. Figure A.2 illustrates these frames

as well as the transformations between them.

Figure A.2: Transformations between frames

Hence the ”absolute velocity” in terms of the relative motion Q(t) can be computed by differentiating

(A.11) with respect to t the velocities expression, yielding,

q̇ = ḂQ+BQ̇+ ṙ (A.12)
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The meaning of these three terms can be clarified considering for instance a translational motion (Ḃ =

0). Hence (A.12) is equivalent to q̇ = BQ̇+ ṙ.

Theorem If a moving system K has translational motion relative to k, then the absolute velocity is

equivalent to the sum of the relative velocity and K system motion velocity, as follows,

v = vrel + vo (A.13)

where,

• v = q̇ ∈ k is the absolute velocity

• vrel = BQ̇ ∈ k is the relative velocity (distinct from Q̇ ∈ K)

• vo = ṙ ∈ k is the velocity of motion of the moving coordinate system.

Angular velocity

Consider a point at rest in K (i.e. Q̇ = 0) and a coordinate system K with only rotational motion ( i.e.

, R = 0). For this case the motion of q(t) is called a transferred rotation.

Theorem At every time instant t, there is a vector ω(t) ∈ k such that the transferred velocity can be

expressed as,

q̇ = ω × q (A.14)

where ω denotes the instantaneous angular velocity; clearly it is uniquely defined by (A.14), see Figure

A.3 for its illustration.

ω

q

q
.

o

Figure A.3: Angular Velocity

Corollary. Consider a rigid body K with rotational motion around a stationary point o of space k.

Hence, at every time instant, there exists an instantaneous rotation axis with respect to the referred

motion.

The instantaneous axis of rotation in k is given by vector Ω, whereas for K the corresponding vector

is denoted as ω = B−1Ω ∈ K, where ω is the vector of angular velocity in the body. Therefore according

to (A.12) it yields that q̇ = ḂQ. Moreover writing Q in terms of q, gives,

q̇ = ḂB−1q = Aq (A.15)

57



where A = ḂB−1 : k → k is a linear operator on k.

Knowing that A is skew-symmetric, see [1], one can write (A.14) as,

q̇ = S(ω)q = ω × q (A.16)

Note that in Cartesian coordinates the operator S(ω) is given by an antisymmetric matrix (A.17).

S(ω) =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (A.17)

Thus matrix S(ω) can be seen as an angular velocity cross product equivalence. Suppose now that

system K rotates (r = 0), and that a point in K is moving (Q̇ 6= 0). From (A.12) yields,

q̇ = ḂQ+BQ̇ = [ω × q] + vrel (A.18)

Theorem: If a moving system K rotates relative to o ∈ k, then the absolute velocity is equal to the

sum of the relative velocity and transferred velocity:

v = vrel + vn (A.19)

where

• v = q̇ ∈ k, is the absolute velocity

• vrel = BQ̇ ∈ k, is the relative velocity

• vn = ḂQ = [ω × q] ∈ k, is the transferred velocity of rotation

Consider now rotating frames. Let Bt : K → k be a frame K rotation relative to frame k, which is

stationary. Moreover, let Q(t) ∈ K be a moving point vector in the moving frame, q(t) = BtQ(t) ∈ k be a

moving point vector in the stationary frame and Ω be the angular velocity vector in the moving frame.

According to Newton’s second law, the motion of q in k can be described as,

mq̈ = f(q, q̇) (A.20)

Theorem: There are three types of inertial forces acting upon every moving point Q of mass m, in a

rotating coordinate system.

• The inertial force of rotation: m(ω̇ ×Q)

• The Coriolis force: 2m(ω × Q̇)

• The centrifugal force: m(ω × (ω ×Q))
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The inertial force of rotation occurs only when angular velocity variations occur, and describes re-

action torques for a body angular momentum variation. The two remaining forces are present even in

uniform rotation, see Figure A.4.

ω 

Q - [ Q × [ ω  × Q ] ]

[ ω  × Q ]

o

r

Figure A.4: Forces in constant rotational motion

Unlike translational rigid bodies motion a rotational motion requires a full body mass distribution

characterization. Therefore, it is required to define the body mass distribution according to an inertia

tensor, defined as,

J =


Jxx −Jxy −Jxz
−Jyx Jyy −Jyz
−Jzx −Jzy Jzz

 (A.21)

Substituting (A.21) in (A.6) yields,
hx

hy

hz

 =


Jxx −Jxy −Jxz
−Jyx Jyy −Jyz
−Jzx −Jzy Jzz



ωx

ωy

ωz

 (A.22)

For further details regarding the inertia tensor computation for a given rigid body see [15].

A.1.3 Euler’s equations

Euler’s equations describe rotational body motion dynamics, thus they are essential to fully under-

stand satellites dynamic behaviour with coupled RTDs. This Appendix Subsection describes Euler’s

equations for a general case, these concepts can be found in more detail in [6].

Rigid body rotational motions around its center of mass G or around a fixed point P verify (A.9) which

states that,

τ = ḣ (A.23)

, where τ denotes the rigid body torque.

Considering a co-moving coordinate frame xyz (composed by unitary components ~ex,~ey and ~ez), with

angular velocity Ω with respect to point G or P . The angular momentum can be decomposed in three

components of space.

h = hx ~ex + hy ~ey + hz ~ez (A.24)
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For simplicity consider that,

1. The moving xyz axes are the principal axes of inertia, and

2. The moments of inertia relative to xyz are constant in time.

According to (A.22), and considering a rigid body with all three planes xy,yz and xz being planes of

symmetry with respect to the mass distribution, (A.24) can be written as,

h = Jxx.Ωx ~ex + Jyy.Ωy ~ey + Jzz.Ωz ~ez (A.25)

The theorem of transferred velocity of a rigid body motion between frames, given by (A.19), allows to

write angular momentum for such rigid body as,

τ = ḣrel + Ω× h (A.26)

note that, Ω refers to the moving xyz coordinate system angular velocity and ω refers to body angular

velocity, both described with respect to xyz non-inertial frame components.

ω = ωx ~ex + ωy ~ey + ωz ~ez

Ω = Ωx ~ex + Ωy ~ey + Ωz ~ez

The absolute angular acceleration can be also devised according to the theorem of transferred velocity

(A.19). Thus, it becomes,

α = ω̇ =
dωx
dt

~ex +
dωy
dt

~ey +
dωz
dt

~ez + Ω× ω (A.27)

Solving the cross product in (A.27), the angular acceleration becomes,

α = (ω̇x + Ωyωz − Ωzωy︸ ︷︷ ︸
αx

) ~ex + (ω̇y + Ωzωx − Ωxωx︸ ︷︷ ︸
αy

)~ey + (ω̇z + Ωxωy − Ωyωx︸ ︷︷ ︸
αz

)~ez (A.28)

Hence, it is usually true that,

αx 6= ω̇x αy 6= ω̇y αz 6= ω̇z (A.29)

Considering the transferred velocity theorem (A.19), the rigid body relative angular momentum deriva-

tive in (A.26) becomes,

ḣrel =
d(Jxxωx)

dt
~ex +

d(Jyyωy)

dt
~ey +

d(Jzzωz)

dt
~ez (A.30)

Assuming Jxx,Jyy and Jzz to be constant values, (A.30) yields,

ḣrel = Jxx.ω̇x ~ex + Jyy.ω̇y ~ey + Jzz.ω̇z ~ez (A.31)
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Combining (A.26) and (A.31) follows,

τ = Jxx.ω̇x ~ex + Jyy.ω̇y ~ey + Jzz.ω̇z ~ez +

∣∣∣∣∣∣∣∣∣
~ex ~ey ~ez

Ωx Ωy Ωz

ωx ωy ωz

∣∣∣∣∣∣∣∣∣ (A.32)

Moreover expanding (A.32) in three-dimensions and computing the cross product yields,

τx = Jxx.ω̇x + Jzz . Ωy . ωz − Jyy . Ωz . ωy

τy = Jyy.ω̇y + Jxx . Ωz . ωx − Jzz . Ωx . ωz

τz = Jzz.ω̇z + Jyy . Ωx . ωy − Jxx . Ωy . ωx

(A.33)

If the co-moving frame xyz is rigidly attached to the body frame, then its angular velocity is the same as

that of the body, i.e. , Ω = ω. For such case (A.33) reduces to the classical Euler equations, as follows,

τ = ḣrel + ω × h (A.34)

Expanding (A.34) with respect to the three components, ~ex, ~ey and ~ez yields,

τx = Jxx.ω̇x + (Jzz − Jyy)ωyωz

τy = Jyy.ω̇y + (Jxx − Jzz)ωzωx
τz = Jzz.ω̇z + (Jyy − Jxx)ωxωy

(A.35)
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Appendix B

RSA Tetrahedral geometry

This appendix covers the actuator system study for a regular tetrahedral geometry configuration.

According to Section 2.3, some actuator systems composed of at least three holonomic actuators are

capable of moving without constraints on a surface, thus being controllable. Therefore, actuator systems

composed of three or more actuators, may confer three independent rotational DOF to the RSA sphere.

Hence it is possible to create reaction torques according to any direction.

The regular tetrahedral geometry is considered due to its equilateral triangle facets composition,

which according to Section 2.3 have performance benefits for systems composed of three holonomic

actuators. Furthermore, a regular tetrahedral geometry proves to be an efficient way to dispose the

actuators in a three-dimensional space.

Section B.1 analyses the sphere static equilibrium issue, proving the referred regular tetrahedral

geometry capability to guarantee the sphere static equilibrium.

Section B.2 shows a possible actuator rotational axes computation considering the constraints im-

posed by a regular tetrahedral geometry.

B.1 Static Equilibrium

The actuator system regular tetrahedral geometry, concerns four actuators contact points in contact

with the sphere surface coincident with regular tetrahedron vertices circumscribed on the sphere, see

Figure B.1. It is intended to analyse if the actuator system adopted geometry verifies the sphere static

equilibrium. Furthermore the static equilibrium aims to prove the forces sum and moments sum acting on

the sphere are zero. Consequently, the contact forces induced by the actuator system on the spherical
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Figure B.1: Regular Tetrahedral Geometry

body surface have to verify (B.1). 

∑
Fx = 0∑
Fy = 0∑
Fz = 0∑
τx = 0∑
τy = 0∑
τz = 0

(B.1)

where Fi denotes the force along the i component of space, and τi denotes the force moment along the

i component of space.

One intuitive solution for the given geometry is to consider the actuators to be perpendicular to the

sphere surface, having its contact force vectors pointing from the tetrahedron vertices to the sphere

center. Additionally, these force vectors are chosen to be coherent with the normal vectors defined by

tetrahedron planes, see Figure B.2. For simplicity let us assume a unitary sphere mass.

Using MATLAB® symbolic language, one can compute the under-determined system solutions that

relate the chosen four force vectors with (B.1). The referred four vectors are composed of three compo-

nents each, given a total of twelve unknowns, see (B.2).
F1

F2

F3

F4

 =


a ~ex b ~ey c~ez

d ~ex e ~ey f ~ez

g ~ex h~ey i ~ez

j ~ex k ~ey l ~ez

 (B.2)

Considering that all vectors are described with respect to the sphere center reference frame, one can

compute (B.1) solution for a given contact points and force vectors choice. Note that the momentum is

defined as,

τ = F × ρ (B.3)

where F denotes the force vector applied to a given point of space and ρ denotes the position vector of
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the referred point with respect to the reference frame origin. Therefore (B.3) becomes,
τx

τy

τz

 =


Fyρz − Fzρy
−Fxρz + Fzρx

Fxρy − Fyρx

 (B.4)

Expanding (B.1) with respect to four force vectors yields,

∑
Fx = 0∑
Fy = 0∑
Fz = 0∑
τx = 0∑
τy = 0∑
τz = 0


≡



(a+ d+ g + j) ~ex = 0

(b+ e+ h+ k)~ey = 0

(c+ f + k + l)~ez = 0

(bρ1z − cρ1y + eρ2z − fρ2y + hρ3z − kρ3y + jρ4z − lρ4y) ~ex = 0

(−aρ1z + cρ1x − dρ2z + fρ2x − gρ3z + kρ3x − jρ4z + lρ4x)~ey = 0

(aρ1y − bρ1x + dρ2y − eρ2x + gρ3y − hρ3x + jρ4y − kρ4x)~ez = 0


(B.5)

Hence, as referred, the system is in fact under-determined, having twelve vector component unknowns

for only six equations. Considering the reference frame and regular tetrahedral geometry origin to be

coherent and defined at [0, 0, 0], an example of a regular tetrahedron vertices can be defined as,


ρ1

ρ2

ρ3

ρ4

 =


−0.5775 ~ex 0.5775~ey 0.5575~ez

−0.5775 ~ex −0.5775~ey −0.5575~ez

0.5775 ~ex −0.5775~ey 0.5575~ez

0.5775 ~ex 0.5775~ey −0.5575~ez

 (B.6)

Considering the force vectors corresponding to the ρi vectors in (B.6), it is desired to show that the

system is in fact in static equilibrium.
F1

F2

F3

F4

 =


0.5775 ~ex −0.5775~ey −0.5775~ez

0.5775 ~ex 0.5775~ey 0.5775~ez

−0.5775 ~ex 0.5775~ey −0.5775~ez

−0.5775 ~ex −0.5775~ey 0.5775~ez

 (B.7)

Using vectors (B.6) and force vector coordinates (B.7) it can be verified that this actuator geometric dis-

position choice achieves a static equilibrium, according to (B.5). Figure B.3 shows the vertices (contact

points) and corresponding force vectors of this regular tetrahedral solution.

B.2 Actuators rotation axes determination

Section B.1 verifies the RSA sphere static equilibrium for an actuator system according to a regular

tetrahedral geometry.

Based on the referred contact force vectors F1, F2, F3, F4, it is required to determine the actuators

rotational axis vectors. The computation of these vectors can be also performed using MATLAB® sym-
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bolic notation. The rotation axis vectors must be computed in order to achieve a balanced geometry that

distributes as equally as possible the effort performed by all the actuators for a given spherical angular

motion. To find such vectors consider the definition of two requirements as follows.

The first requirement concerns that any actuator i rotation axis must belong to the normal plane

defined by actuator i contact force vector at intersection with the sphere surface. Such requirement can

be written in mathematical terms as follows,



ω1F1 = 0

ω2F2 = 0

ω3F3 = 0

ω4F4 = 0

(B.8)

where, ωi and Fi denote respectively the actuator i angular velocity vector and its corresponding contact
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force vector. The twelve components of the four angular velocity vectors ωi can be described as follows,
ω1

ω2

ω3

ω4

 =


ω1x ω1y ω1z

ω2x ω2y ω2z

ω3x ω3y ω3z

ω4x ω4y ω4z

 (B.9)

It’s convenient to define more equations in order to obtain the referred balanced solution. Analysing a

regular tetrahedron plane normal vectors, one verifies that the dot product between any two of these

normal vectors are related according to a constant a = − 1
3 . Therefore, taking advantage of the regu-

lar tetrahedral elegant geometry consider six more equations ensuring that the resultant four actuator

rotation axis vectors are related according to the same relation, as follows,



ω1.ω2 = a

ω1.ω3 = a

ω1.ω4 = a

ω2.ω3 = a

ω2.ω4 = a

ω3.ω4 = a

(B.10)

The combination of (B.8) and (B.10) gives a system of ten equations with respect to twelve unknowns,

therefore, this is still an under-determined system and multiple solutions exist. Nevertheless using

MATLAB® MuPAD software all the solutions of such a system can be easily computed. Choosing one of

the obtained solutions yields,


ω1x

ω1y

ω1z

 =


1/2−

√
3
6

√
3
6 + 1/2

−
√
3

3

 ,

ω2x

ω2y

ω2z

 =


−
√
3

6 − 1/2

1/2−
√
3
6

√
3
3

 ,

ω3x

ω3y

ω3z

 =


√
3
6 − 1/2
√
3
6 − 1/2

−
√
3

3

 ,

ω4x

ω4y

ω4z

 =


√
3
6 + 1/2
√
3
6 − 1/2
√
3
3

 (B.11)

The code used for obtaining such solution is described as follows,
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1 eqn1 := (2887*v1x)/5000 - (2887*v1y)/5000 - (2887*v1z)/5000=0: %Plane constraint 1

2 eqn2 := (2887*v2x)/5000 + (2887*v2y)/5000 + (2887*v2z)/5000=0: %Plane constraint 2

3 eqn3 := (2887*v3y)/5000 - (2887*v3x)/5000 - (2887*v3z)/5000=0: %Plane constraint 3

4 eqn4 := (2887*v4z)/5000 - (2887*v4y)/5000 - (2887*v4x)/5000=0: %Plane constraint 4

5 eqn5 := v1x*v2x + v1y*v2y + v1z*v2z=a: %Tetrahedral geometry vector relation 1

6 eqn6 := v1x*v3x + v1y*v3y + v1z*v3z=a: %Tetrahedral geometry vector relation 2

7 eqn7 := v1x*v4x + v1y*v4y + v1z*v4z=a: %Tetrahedral geometry vector relation 3

8 eqn8 := v2x*v3x + v2y*v3y + v2z*v3z=a: %Tetrahedral geometry vector relation 4

9 eqn9 := v2x*v4x + v2y*v4y + v2z*v4z=a: %Tetrahedral geometry vector relation 5

10 eqn10 := v3x*v4x + v3y*v4y + v3z*v4z=a: %Tetrahedral geometry vector relation 6

11 eqn11 := sqrt(v1xˆ2+v1yˆ2+v1zˆ2)=1: %Unit norm requirement vector 1

12 eqn12 := sqrt(v2xˆ2+v2yˆ2+v2zˆ2)=1: %Unit norm requirement vector 2

13 eqn13 := sqrt(v3xˆ2+v3yˆ2+v3zˆ2)=1: %Unit norm requirement vector 3

14 eqn14 := sqrt(v4xˆ2+v4yˆ2+v4zˆ2)=1: %Unit norm requirement vector 3

15

16 assume(a =-1/3): % Assume the constant relation of tetrahedral vectors geometry

17

18 solve({eqn1,eqn2,eqn3,eqn4,eqn5,eqn6,eqn7,eqn8,eqn9,eqn10,eqn11,eqn12,eqn13,eqn14},

19 [v1x,v1y,v1z,v2x,v2y,v2z,v3x,v3y,v3z,v4x,v4y,v4z,a],IgnoreAnalyticConstraints)

Figures B.4 and B.5 represent the obtained solution.
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Appendix C

Quaternions

This Appendix provides a brief description regarding quaternion notation. The following contents are

a summary of the required concepts to develop a SACS with respect to quaternion notation, for further

details see [16] and [6].

Quaternion notation makes use of Euler’s theorem, stating that two reference frames are always

related by an unique rotation about a single line through their common origin. This line is called the

Euler axis and the referred unique rotation corresponding angle is denoted as principal angle. This

important theorem allows to describe frame rotations with less variables compared to Euler angles.

Let û be the unit vector along Euler axis and v be an arbitrary vector in space. Hence v can be

decomposed in two components, one v⊥ normal to û and another v‖ parallel to û, so that the following

relation is valid,

v = v‖ + v⊥ (C.1)

Therefore, the v component along û can be computed from the dot product as follows,

v‖ = (v · û)û (C.2)

Combining (C.1) and (C.2) yields,

v⊥ = v − (v · û)û (C.3)

Consider that v′ is obtained by rotating v through an angle θ around û, as it can be seen in Figure C.1

The rotation of v keeps the magnitude of v⊥ and its components along the direction û unchanged,

see (C.4) and (C.5).

||v′⊥|| = ||v⊥|| (C.4)

||v′‖|| = (v · û).û (C.5)

Which means that having rotated v′⊥ about û, results in two components, namely, ||v′⊥||cos(θ) along v⊥

and ||v′⊥||sin(θ) along the normal vector perpendicular to ûv plane. Let ûv be the plane defined by û and
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v vectors. Moreover let ŵ be the unit vector normal to ûv plane.

ŵ = û× v⊥
||v⊥

(C.6)

Consider (C.7) illustration in Figure C.1.

x

y

z

θ

v

v sin(θ)

v ⱶ 

v  ⱶ 

v

v  cos(θ)ⱶ ŵ

u^

Figure C.1: Vector rotation with respect to Euler axis

v′⊥ = ||v′⊥||cos(θ)
v⊥
||v⊥||

+ ||v′⊥||sin(θ)
û× v⊥
||v⊥||

(C.7)

Making use of the relation (C.4), (C.7) yields,

v′⊥ = cos(θ).v⊥ + sin(θ).û× v⊥ (C.8)

Having that,

û× v⊥ = û× [v − v‖] = û× v (C.9)

and since v‖ is parallel to û, combining this with (C.3) yields,

v′⊥ = cos(θ)[v − (v.ûû)] + sin(θ)(û× v) (C.10)

Finally having in mind that v′ = v′⊥ + v′‖, one finds, by making use of (C.5) and (C.10) that,

v′ = cos(θ)v + (1− cos(θ))(û.v) + sin(θ)(û× v) (C.11)

Expression (C.11) allows to express a vector v rotation about a line with respect to an unique rotation

θ. Hence, it is possible to write a body fixed Cartesian frame x′y′z′ from the inertial xyz frame by a
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single rotation through the principal angle θ about the Euler axis û. The unit vectors ~ex,~ey,~ez are thereby

rotated into ~e′x,~e′y and ~e′z . Moreover these two sets of unit vectors are related as,

~e′x = cos(θ) ~ex + (1− cos(θ))(û . ~ex) û+ sin(θ)(û× ~ex)

~e′y = cos(θ) ~ey + (1− cos(θ))(û . ~ey) û+ sin(θ)(û× ~ey)

~e′z = cos(θ) ~ez + (1− cos(θ))(û . ~ez) û+ sin(θ)(û× ~ez)

(C.12)

Writing Euler axis unit vector û with respect to the terms of its direction cosines, namely, l,m and n

along the original xyz axes yields,

û = l ~ex +m ~ey + n ~ez (C.13)

Substituting (C.13) into (C.12) yields,

~e′x = [l2(1− cos θ) + lcos θ] ~ex + [lm(1− cos θ) + nsin θ] ~ey + [ln(1− cos θ) +msin θ] ~ez

~e′y = [lm(1− cos θ)− nsin θ] ~ex + [m2(1− cos θ) + cos θ] ~ey + [mn(1− cos θ) + lsin θ] ~ez

~e′z = [ln(1− cos θ) +msin θ] ~ex + [mn(1− cos θ) + lsin θ] ~ey + [n2(1− cos θ) + cos θ] ~ez

(C.14)

Therefore, considering (C.14), it’s seen that a rotation matrix between frames xyz and x′y′z′ can be

defined with respect to the Euler axis û and the principal angle θ. Thus the referred rotation matrix is

given by (C.15).

[Q]xyz to x′y′z′ =


l2(1− cos θ) + lcos θ lm(1− cos θ) + nsin θ ln(1− cos θ) +msin θ

lm(1− cos θ)− nsin θ m2(1− cos θ) + cos θ mn(1− cos θ) + lsin θ

ln(1− cos θ) +msin θ mn(1− cos θ) + lsin θ n2(1− cos θ) + cos θ

 (C.15)

Hence it is possible to describe any rotation between frames with respect to four parameters, namely,

three components of the Euler axis and the principal angle θ.

Quaternion notation were introduced by Hamilton1 describing a body frame orientation in a simple

yet elegant form.

As the name implies, quaternions are composed of four components,

q̂ =



q1

q2

q3

q4


=

 g

q4

 (C.16)

where g is known as the vector part and q4 is known as the scalar part.

A quaternion norm ||q̂|| is defined as

||q̂|| =
√
q21 + q22 + q23 + q24 (C.17)

1 On October 16, 1843, when Hamilton was on his way to the Royal Irish Academy where he was going to preside at a council
meeting. As he walked along the Royal Canal with his wife, the concepts behind quaternions were taking shape in his mind. When
the answer dawned on him, Hamilton could not resist the urge to carve the formula for the quaternions, i2 = j2 = k2 = ijk = −1,
which are the basis of quaternion notation
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This study considers only unit quaternions. Hence, quaternions are defined as,

q = sin
θ

2
. û , q4 = cos

θ

2
(C.18)

expanding with respect to the û components yields,

q1 = l sin
θ

2
, q2 = m sin

θ

2
, q3 = n sin

θ

2
, q4 = cos

θ

2
(C.19)

C.1 Quaternion relation with rotation matrices

According to (C.19) it is possible to write matrix (C.15) with respect to the quaternion components.

Hence (C.15) can be written as follows,

[Q]xyz to x′y′z′ =


q21 − q22 − q23 + q24 2(q1.q2 + q3.q4) 2(q1.q3 − q2.q4)

2(q1.q2 − q3.q4) −q21 + q22 − q23 + q24 2(q2.q3 + q1.q4)

2(q1.q3 + q2.q4) 2(q2.q3 − q1.q4) −q21 − q22 + q23 + q24

 (C.20)

(C.20) verifies the required orthogonality property of a rotation matrix, see (C.21).

[Q]xyz to x′y′z′ . [Q]Txyz to x′y′z′ = 1 (C.21)

The unit quaternion can also be obtained from the direction cosine matrix [Q]xyz to x′y′z′ . This proce-

dure is described as follows.

First obtain the following matrix,

[k] =
1

3


Q11 −Q22 −Q33 Q21 +Q12 Q31 +Q13 Q23 −Q32

Q21 +Q12 −Q11 +Q22 −Q33 Q32 +Q23 Q31 −Q13

Q31 +Q13 Q32 +Q23 −Q11 −Q22 +Q33 Q12 −Q21

Q23 +Q32 Q31 −Q13 Q12 −Q21 Q11 +Q22 +Q33

 (C.22)

Then, compute the eigenvalues of the obtained matrix. The eigenvector corresponding to the largest

eigenvalue corresponds to the unit quaternion q̂.

C.2 Quaternion multiplication

Analogously to rotation matrices multiplication, it is useful to compute in quaternion notation the

resultant rotation obtained from combining two consecutive rotations. Therefore, such two rotations can

be expressed in quaternion terminology as [A(q)] and [A(q′)]. Hence, the following expression gives the

overall attitude rotation computation in terms of quaternion terminology,

[A(q′′)] = [A(q′)][A(q)] (C.23)

71



Using quaternion properties, one can extract q′′ value from [A(q′′)], hence,

q′′ = qq′ =


q′′1

q′′2

q′′3

q′′4

 =


(q1q

′
4 + q2q

′
3 − q3q′2 + q4q

′
1)̂i

(−q1q′3 + q2q
′
4 + q3q

′
1 + q4q

′
2)ĵ

(q1q
′
2 − q2q′1 + q3q

′
4 + q4q

′
3)k̂

(−q1q′1 − q2q′2 − q3q′3 + q4q
′
4)

 (C.24)

which can be written in a matrix multiplication form as (C.25), see [10] for further details.
q′′1

q′′2

q′′3

q′′4

 =


q′4 q′3 −q′2 q′1

−q′3 q′4 q′1 q′2

q′2 −q′1 q′4 q′3

−q′1 −q′2 −q′3 q′4




q1

q2

q3

q4

 (C.25)

C.3 Quaternion Time derivative

The quaternion time derivative is an useful tool when working with quaternions to describe a body

angular velocity and angular acceleration according to quaternion notation.

d

dt
q̂ =

1

2
[Ω]q̂ (C.26)

The quaternion time derivative is illustrated in (C.26), being Ω matrix described in (C.27), where ωx,ωy

and ωz are the body frame angular velocity components

[Ω(ω)] =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (C.27)
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Appendix D

Redundant RWs arrangement optimal

criteria

This Appendix describes the torque combination for redundant RW arrangements using Moore-

Penrose pseudoinverse.

It is known that, two distinct values of τrw may produce the same τctrl, hence their difference, ∆τrw,

must satisfy (D.1).

Wrw∆τrw = 0 (D.1)

Consequently ∆τrw must lie in the Wrw null space, which is (n − 3) dimensional, assuming Wrw is full

rank.

The Moore-Penrose pseudoinverse method enables torque commands distribution computation for

redundant RW arrangements. Let Wrw pseudoinverse be denoted as W†rw.

Moreover considering Wrw to be full rank, the Moore-Penrose pseudoinverse is given by,

W†rw = WT
rw(WrwWT

rw)−1 (D.2)

Hence, it is possible to write,

τrw = W†rwτctrl (D.3)

The most general solution for RWs torque coefficients satisfying (3.29) is given by (D.4).

τrw = W†rwτctrl + nn = WT
rw(WrwWT

rw)−1τctrl + nn (D.4)

where nn denotes an arbitrary vector in the null space of Wrw. Computing the RWs torques Euclidean

norm yields,

||τrw||2 = ||WT
rw(WrwWT

rw)−1τctrl||2 + 2(τctrl)
T (WrwWT

rw)−1Wrw nn + ||nn||2 (D.5)
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Therefore according to the the null space definition, (D.5) yields,

||τrw||2 = ||WT
rw(WrwWT

rw)−1τctrl||2 + ||nn||2 (D.6)

Analysing (D.6) one concludes that the Euclidean norm L2 is minimized when nn = 0, i.e., the Moore-

Penrose pseudoinverse verifies the Euclidean norm requirement for distributing the RWs torques. For

a complete proof of the result and appliances in RWs satellite torque optimization, see respectively [2]

and [22].
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Appendix E

Generic DC motor model

This Appendix addresses the dynamic model derivation of a DC motor. This model is a reduced

order approximation of a DC motor complete model, nevertheless it describes its essential behaviour.

The following model was obtained according to distinct approaches for a DC motor model, e.g. [25]

and [30]. Figure E.1 shows a generic electric scheme of a DC motor with respect to its electrical pa-

rameters. Considering Figure E.1, the motor circuit equation can be found based on KVL. Writing the

Ia

Vc=Kv ωaVa

La Ra

-

Figure E.1: Electrical motor equivalent scheme

armature electrical differential equations yields,

Va = (Ra +
d

dt
La)Ia + Vc (E.1)

where, Va and Ia denote respectively the armature voltage and the armature current and Ra and La

denote respectively the armature resistance and the armature inductance. Voltage Vc denotes the back

electromotive force which is proportional to the angular velocity ωa, as shown in (E.2).

Vc = kvωa (E.2)

where, kv refers to the motor velocity constant, varying according to motor physical construction. The

motor mechanical torque balance is described by,

τm = ( ddtJm + Fm)ωa + τL

τm = ktIa
(E.3)
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where τm and τL denote respectively the driving torque and load reaction torque, whereas Jm, Fm and

kt are respectively the motor shaft moment of inertia, the motor viscous friction coefficient and the torque

constant. Combining (E.1), (E.2) and (E.3) yields,

d
dtIa = −Ra

La
Ia − kv

La
ωa + Va

La

d
dtωa = kt

Jm
Ia − Fm

Jm
ωa − τL

Jm

(E.4)

Analysing (E.4) it is straightforward to obtain a DC motor generic state-space model matrices, as follows,

d

dt

Ia
ωa

 =

−Ra

La

kv
La

kt
Jm

−Fm

Jm


︸ ︷︷ ︸

A

Ia
ωa

+

 1
La

0

0 − 1
Jm


︸ ︷︷ ︸

B

Va
τL

 (E.5)

y1
y2

 =

1 0

0 1


︸ ︷︷ ︸

C

Ia
ωa

+

0 0

0 0


︸ ︷︷ ︸

D

(E.6)

Equations (E.5) and (E.6) denote the state space equations which can be expressed symbolically

as,
ẋ = Ax+Bu

y = Cx+Du
(E.7)

Computing (E.4) Laplace transform expression yields,

sIa(s) = −Ra
La

Ia(s)− kv
La

Ωa(s) +
1

La
Va(s) (E.8)

sΩa(s) =
kt
Jm

Ia(s)− Fm
Jm

Ωa(s)− 1

Jm
τL(s) (E.9)

Regarding (E.8) and (E.9) a system block diagram can be obtained, see Figure E.2.

1
Ra + s La

1
s Jm + Fm

kv

-+
Va

τL 

Ωm-
+kt

Ia 

Figure E.2: Motor dynamics block diagram

Motors usually have gear ratios between the load velocity and motor shaft velocity in order to improve

their efficiency. If such ratio didn’t exist, the inclusion of the load inertia would be straightforward and

required only the load moment of inertia sum to the motor moment of inertia (Jeq = Jm + JL). Nev-

ertheless, if such a gear ratio exist, the equivalent load moment of inertia seen at the motor frame is

described as,

Jeq = (Jm +
JL
k2r

) (E.10)

76



where, kr denotes the gear ration given by,

kr =
ωm
ωL

(E.11)

If the load inertia frame doesn’t match the motor frame, it is required to perform an inertia tensor

transformation, see (E.12).

JML = RML JL(RML )T (E.12)

Let RML denote the rotation matrix from the load frame to the motor frame.

An example of a DC motor state-space model embedded in an angular velocity control loop is de-

picted in Figure E.3. The ”Voltage limit saturation” and ”Slew-rate limitation” blocks intend to model the

motor power supply physical limits.

-
+ PID(s)

x =Ax+Bu
y=Cx+DuPID Controller

State-Space 
Model

Ia

ωa

ωref Va

ωa

Voltage limit 
saturation

Slew-rate 
limitation τL

Figure E.3: DC motor state-space model with PID controller and PS limitations
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